Ground Vibration at SSRF Site

Rongbing Deng, Lixin Yin , Xiao Wang , Jianhui Chen, Lianhua Ouyang, Fei Gao, Tingting Zhen, Zhidi Lei

Shanghai Synchrotron Radiation Facility (SSRF, CHINA) Shanghai Advanced Research Institute, Chinese Academy of Sciences

18 March 2021

CONTENTS

- **Status of SSRF**
- **Basic requirements**
- Site condition and building
- **Conventional facility**
- **Ground vibration measurements**
- **Summary**

Shanghai Synchrotron Radiation Facility (SSRF)

A third generation light sourceStorage Ring Energy:3.5 GeVCircumference:432 mNatural Emittance:3.9 nm-radBeam Current:200 ~ 300 mA

Beam Lifetime:~20 hrsStraight Sections:4×12.0 m, 16×6.5 m

Max. Beam Power: ~600kW

16 beamlines in operation

- > 08U Soft X-ray Microscopy
- > 13W X-ray Imaging and Biomedical Application
- > 14W X-ray Absorption Fine Structure Spectroscopy
- > 14B High-Resolution Diffraction
 - > 15U Hard X-ray Micro-focus and Application
- > 16B X-ray Scattering
- > 17U Macromolecular Crystallography

SSRF Campus in 2008

The SSRF Complex

- Dec. , 2004 : Ground breaking
- Dec., 2007: First synchrotron light

W Statias ring

• May, 2009: Open to users

Beamlines

Storage Ring 3.5GeV, 432m

Booster 3.5GeV, 180m

Linac 150MeV

Child States SSRF Campus now

ALLER AND ALL ALLER AND AL

HICH

AN ALAN MARKED

月間書目目書

ADDE DERE ADDE DERE

The SSRF Site Location

Beam Stability Criteria

Electron beam

Position stability $\Delta \sigma x / \sigma x$ and $\Delta \sigma y / \sigma y$: 10%

Angular stability $\Delta \sigma' x / \sigma' x$ and $\Delta \sigma' y / \sigma' y$: 10%

Stability goal in SSRF

Horizontal orbit stability $< 5\mu m$

Vertical orbit stability <1µm

Beam Sizes at Source Points

Source Point	σ _x (μm)	σ _x '(µrad)	σ _y (μm)	σ _y '(µrad)
Standard Straight (6.5m)	158	33	9.9	3.95
Long Straight (12.0m)	247	20	15	2.55
1°@upstream of SS	70	114	22	1.97
3.1°@upstream of SS	53	94	22	1.97
1°@upstream of LS	77	116	23	1.79
3.1°@upstream of LS	56	96	23	1.79
10	•			

Engineering Requirements for SSRF

Long term

Slab deformation at ring tunnel and experimental hall

 Δz <100 μ m/10m/year

- $\Delta z < 10 \mu m / 10 m / day$
- $\Delta z < 1 \mu m / 10 m / hour$
- Medium term
- Air temperature stability (24hours) Ring Tunnel: T= \sim 27°C ; Δ T < \pm 0.2°C Experimental: T=22 \sim 26°C \pm 2°C
- Cooling water temperature stability (24hours)
 Ring tunnel: T= ~ 30°C ±0.2°
 Magnet PS: T= ~ 30°C ±2°C

□ Short term

Integrated rms displacement above 1Hz:

Vertical: $\Delta z < 0.15 \mu m$ (quiet) $\Delta z < 0.3 \mu m$ (noisy) Horizontal: $\Delta x < 0.3 \mu m$ (quiet) $\Delta x < 0.6 \mu m$ (noisy)

Surface

Geologic Conditions

- Alluvium area of Yangzhi river
- Rock bed is about 300m underground
- Soft soil and low ground wave velocity (110m/s)

SRGW2021

Ground Vibration

Ground vibration is the most determinative effect !

≻Minimize noise sources.

➤Use various feedback.

		Peak to Peak distril	oution with	out highest 5%	Selec	Selected Data	
		Maximum	FWHM	Average	SD	Quiet	Noisy
Location		pp (nm)	(nm)	RMS (nm)	σ (nm)	RMS (nm)	RMS (nm)
1	Seismic Station Moxa	7	17	0.6	0.1	0.5	0.9
2	Salt Mine Asse	12	35	0.5	0.1	0.5	0.7
3	CERN LHC Tunnel	21	53	1.8	0.8	0.9	2.9
4	Spring-8 Harima	22	40	2.0	0.4	1.8	2.5
5	FNAL Batavia	23	49	2.9	0.9	2.2	4.0
6	LAPP Annecy	35	59	3.3	1.6	1.9	7.0
7	IHEP Beijing	49	18	8.4	0.5	8.1	9.0
8	SLAC Menlo Park	60	105	4.8	1.2	4.1	7.4
9	APS Argonne	68	56	10.5	1.0	9.8	11.0
10	ALBA Cerdanyola	87	125	18.3	9.5	9.1	42.0
11	DESY TESLA	104	160	17.4	8.4	9.3	35.9
12	DESY XFEL Osdorf	150	195	28.9	11.9	19.5	48.4
13	DESY Zeuthen	105	235	64.0	40.4	88.5	75.6
14	ESRF Grenoble	155	175	71.6	34.9	40.2	137.2
15	DESY XFEL Schenefeld	d 180	245	38.7	16.6	35.1	70.0
16	DESY HERA 170	200	51.8	18.9	34.8	77.0	
17	KEK Tsukuba	170	210	78.0	36.0	38.0	125.1
18	BESSY Berlin	245	160	72.8	28.1	53.1	140.7
19	SSRF Shanghai	550	1000	292	164	102	444

Courtesy of H. Ehrlichmann

Design of the Slab and Building

- Slab for ring tunnel and experimental hall are separated with building
- > Bored piles with base grouting

Number: 2100

Diameter: 0.6m (0.9m for top 7m) Length: 48m (To silty sand layer)

Slab Thickness

1.35m (experimental hall)1.05m (ring tunnel)

Performance of Slab

VANCED RESEARCH INSTITUTE, CHINESE ACADEMY OF SCIENCE

> Slab vibration: Vertical rms value ~0.15µm (quiet time) ~0.25µm (noisy time)

Integrated	(1-100Hz)	RMS d	displacement	(µm)
------------	-----------	-------	--------------	------

		Normal condition			Truck passing by		
	Direction Site	W-E	N-S	V	W-E	N-S	V
	Field	0.265	0.251	0.258	0.349	0.385	0.672
	Slab	0.098	0.130	0.133	0.118	0.166	0.381
	Ratio(Slab/Field)	0.37	0.52	0.52	0.34	0.43	0.57
图科学院上海高等研究院 16							

Conventional Facility Location

- Keep pumps and compressors far from the storage ring
- Main conventional facilities are arranged outside the main building.
- Two under ground channels for pipes and cables.
- Main cooling cycles are set in the alleyway in the main building.
- Cooling water flow rate: < 2m/s</p>
- Air condition machines with damping are located inside the main building.

Conventional Facility in Tunnel

- Branches from the main cooling loop connect the machine in each cell.
- Soft pipe mechanical isolate the main pipe with accelerator components.
- Keep large curve in cooling path for components.
- Water flow rate is limited to 2m/s in magnet and absorber.
- > Air flows to tunnel uniformly.
- ➢ No Air blow to machine directly.
- Temperature sensors are set near high precision BPM.

SRGW2021

Performance of the Conventional Facility

Air temperature stability in Tunnel

Average temperature from the sensors in tunnel T= 27°C ; $\Delta T < \pm 0.1°C$

24Hrs

Cooling water temperature stability for magnets and absorbers

Sensors at the downstream of the heater in main pipe are used for control.

Sensors upstream of each sector are used for monitor.

 $T = 30^{\circ}C$; $\Delta T < \pm 0.1^{\circ}C$

24Hrs

Vibration test for air condition

Test for Ground and Machine

- The first eigenfrequency 21.9Hz (H) 22.5Hz (V)
- Response of quadrupole to floor vibration in first eigenfrequency

34.8 (H); 1.6 (V)

The first eigenfrequency can be improved to 27.7Hz with assistant support.

PSD in lateral direction

PSD in vertical direction

SRGW2021

Test for Ground and Machine

Long-term Mechanical Stability Monitoring of C14-7 BPM

24 Hours

0.8 BPM Vertical 0 Ground Vertical * 0.7 * * 0.6 (m) ut(hu RMS Displacen 0 7 8 9 0.2 20130612-00:00 06:00 09:00 12:00 18:00 03:00 15:00 21:00 20130613-00:00 Time(hh:mm) 2017

Noisy Hours

25

2013

Quiet Hours

Ground Vibration Monitoring for SXFEL Construction at SSRF

SXFEL-TF Construction Schedule

Dec. 30,2014 -May 20,2015 May 6, 2015 -Aug.2,2015 Jul. 27,2015 -Oct. 27,2015 Oct. 27,2015-Mar. 2016 Mar. 2016- Jap.7017 Pile foundation construction Surface foundation construction Construction of main structure Construction of decoration engineering Equipment installation

Comparison of vibration with and without pile

foundation construction

Comparison of vibration with and without surface construction

Comparison of vibration on different floor

A vs. B 10 A vs. C

A:Foor of Experimental Hall B:Floor of Tunnel C:Floor of Room 1049

•The floor of Tunnel and Hall has a better damping effect to vibration above **10Hz.**

•Difference between noisy time and quiet time is relatively large whether in the vibration of Tunnel, Hall floor or floor of Room 1049, especially between 1 and 10Hz.

· 注刻股高速感觉到秘密度高偏均(255)			Frequency(Hz)				
RMS		Noisy Time		Quiet Time			
(1-100Hz)	Tunnel	Hall	Room 1049	Tunnel	Hall	Room 1049	
Vertical	420.4 nm	441.8nm	612.6nm	107.3 nm	110.9nm	126 nm	
N-S	231.2nm	234.7nm	239nm	102.7nm	105.8nm	109.7nm	

10

SHINE (Shanghai HIgh repetitioN rate and Extreme light facility) Project

- 2018-2025
- 3.1 km length, 29m underground
- 8GeV CW Linac, 3 FEL undulator lines, 3 beamlines and 10 end-stations

Vibration test at Similar Tunnel

Goal:

- 1. Get tunnel vibration 24m under ground.
- 2. Compare the influence of metro train and surface traffic

20170121					RMS(1-100Hz) (µm)			
	Distance between Line2 and Line17	Depth	Time	Vertical	N-S	W-E		
			Service time at noon with metro passing	0.4378	0.5238	0.1879		
l	0m	24.8m	Service time at noon without metro passing	0.1767	0.1202	0.1426		
			Non-service time at midnight	0.0754	0.0853	0.0794		
			Service time at noon with metro passing	0.2644	0.2219	0.1510		
l	50m	24.7m	Service time at noon without metro passing	0.1940	0.1279	0.2015		
			Non-service time at midnight	0.0827	0.0946	0.0825		

Vibration in Shaft #1

Seismometer at 29 underground in Shaft #1
Seismometer on the surface ground

Vibration at 29m underground in Shaft #1

Vibration comparison between surface ground and shaft

0209-8:00 12:00 16:00 20:00 0210-00:00 04:00 08:00 12:00 16:00 20:00 0211-00:00 04:00 08:00 12:00 16:00 20:00 0212-00:00 04:00 08:00 12:00 16:00 20:00 0213-00:00 Time(Hour)

PSD of surface ground and shaft1 in the daytime

• Vibration at 29m underground in Shaft #1 when tunnel boring machine does not work

- 20-130nm RMS(1-100Hz) in the vertical direction
- 20-200nm RMS (1-100Hz) in the N-S direction
- 20-230nm RMS (1-100Hz) in the W-E direction
- •Note: The minimum RMS 20nm (1-100Hz) is measured at midnight during spring festival.

• Compared with surface ground, vibration at 29m underground in Shaft #1 decreases greatly in the daytime.

- •Drop to about 20% in the vertical direction
- •Drop to about 50% in the N-S direction
- •Drop to about 50% in the W-E direction

SRGW2021

Summary

Some strategies were adopted in the design of the slab and the building to suppress the higher vibration of the site.

>Conventional facility was located outside of the main building to isolate the vibration generated by mechanism.

>A long-term vibration monitoring system is built to monitor the ground vibration of SSRF.

> Detailed measurements are performed along with the SXFEL and SHINE project.

➢More investigation and optimization for the mechanical engineering are doing along with the operation of the accelerator to realize the beam stability goal for SSRF.

