Timing resolution on an irradiated 3D silicon pixel detector

D. De Simone¹, C. Betancourt¹, G. Kramberger², M. Manna³, G. Pellegrini^{3,4}, Nicola Serra¹

¹University of Zurich ² Jožef Stefan Institute, Ljubljana, Slovenia ³ Centro Nacional de Microelectrónica, Barcelona, Spain ⁴IMB-CNM-CSIC

Outline

- 3D Pixel Sensor CNM Production
- Experimental Setup
- 3D Waveform and Analysis
- Results:

3D Time resolution before and after irradiation for 285µm thick sensor. $\sigma_{_{\rm wf}}$ behaviour for high voltages

Last results

3D Pixel Sensor – CNM production

Features:	Radiation dose
- thickness: 285µm	1) Irradiated (
- cell size: $50x50 \ \mu m^2$	2) Irradiated (
- p-type bulk resistivity: \sim 5k Ω cm	
- diameter holes: 8-10 µm	3) Irradiated (

arXiv:1901.02538

es:

- (a) 8×10^{14} 1 MeV n_{eq}/cm²
- @ 2.3×10^{15} 1Mev n_{eq}/cm^2
- 3) Irradiated @ 4.8×10^{15} 1Mev n /cm²

Design of a single cell structure

Experimental Setup

Signals in coincidence are analyzed

Source: ¹⁰⁶Ru Board: Preamplified UCSC LGAD: HPK50C - high gain 50 um thick (1 mm diameter) Time resolution 39 ps (20°C) and 36 ps (-20°C) 2.stage amp: 4GHz Readout: Waverunner 8404M oscilloscope 4GHz

3D Waveform and analysis – $\sigma_{_{3D}}$

$$\Delta t = t_{LGAD}^* - t_{3D}^*$$

Fit on Δt to obtain: $\sigma_t = (\sigma_{LGAD}^2 + \sigma_{3D}^2)^{1/2}$ $\sigma_{\rm wf}^2 \approx \sigma_{\rm 3D}^2 - \sigma_{\rm j,3D}^2$

Results

σ_{wf} behaviour for high voltages

$\sigma_{\rm wf}$ behaviour for high voltages

3D time resolution before and after neutron irradiation

Irradiated at 8.0×10^{14} 1Mev n_{eq}/cm² 2.3×10^{15} 1Mev n_{eq}/cm²

3D time resolution before and after neutron irradiation

Irradiated at 8.0×10^{14} 1Mev n_{eq}/cm² 2.3×10^{15} 1Mev n_{eq}/cm² at 4.8×10^{15} 1Mev n_{eq}/cm² at Ljubjiana

3D time resolution – σ_{wf} contribution before and after neutron irradiation

Irradiated at 8.0×10^{14} 1Mev n_{eq}/cm² 2.3×10^{15} 1Mev n_{eq}/cm² at 4.8×10^{15} 1Mev n_{eq}/cm² at Ljubjiana

3D time resolution – σ_{i} contribution before and after neutron irradiation

Irradiated at 8.0×10^{14} 1Mev n_{eq}/cm² 2.3×10^{15} 1Mev n_{eq}/cm² at 4.8×10^{15} 1Mev n_{eq}/cm² at Ljubjiana

Conclusions

- We measured data for 3D detector with thickness of 285 μ m at different V_B at 20°C and -20°C
 - Considerable drop close to V_{BD}
- After n irradiation at 8×10^{14} 1MeV n_{eq}/cm^2 at 2.3×10^{15} 1MeV n_{eq}/cm^2 and then at 4.8×10^{15} 1MeV n_{eq}/cm^2
 - stable for -20° C

Next steps:

Redo the measurments increasing the radiation dose •

Backup - Analysis

LGAD Waveform Analysis

1) Noise estimation: gaus fit on the first 100 pt. (5 ns)

2) Offset correction

3) Landau fit around the maximum value in amplitude (4 pt.) and extrapolation of t_{MAX}

4) Landau fit (11 pt.) on the waveform rising

5) Extrapolation of t^*_{LGAD}

4)

3D Waveform analysis

16

3D Waveform and analysis – σ_{i}

Noise:

RMS of the noise evaluated on the first 100 points of the single waveform.

LGAD-LGAD time resolution

-20 C cfd 14% - $\sigma_{_{\rm TOT}}$

Thickness: 285 µm T:-20°C Vbias:100V Radiation dose: 2.3e15 1MeV N_{eq}/cm²

int

int

3D time resolution before and after neutron irradiation at 20°C and -20°C at 100V

Annealed 60 min at 80°C Irradiated at 8×10^{14} 1Mev n_{eq}/cm² and then at 2.3×10^{15} 1Mev n_{eq}/cm² at Ljubjiana

$+20^{\circ}$	σ_{3D} (ps)	σ_j (ps
not irradiated	53 ± 2	36 ± 7
$8\mathrm{e}14~\mathrm{MeV}~\mathrm{n}_{eq}/\mathrm{cm}^2$	37 ± 2	23 ± 3
$2.3\mathrm{e}15~\mathrm{MeV}~\mathrm{n}_{eq}/\mathrm{cm}^2$	44 ± 2	26 ± 5
-20°	σ_{3D} (ps)	σ_j (ps
-20° not irradiated	$ \sigma_{3D} \text{ (ps)} 37\pm2 $	$\sigma_j \text{ (ps)}$ 23±3
$\begin{array}{r} -20^{\circ} \\ \text{not irradiated} \\ 8e14 \ \mathrm{MeV} \ \mathrm{n}_{eq}/\mathrm{cm}^2 \end{array}$	$\sigma_{3D} (ps)$ 37±2 34±2	$ \begin{array}{c} \sigma_j \text{ (ps)} \\ 23\pm3 \\ 23\pm3 \end{array} $

