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LGADs
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 LGAD: silicon detector with a thin (<5μm) and highly 
doped (~1016 P++) multiplication (gain) layer
 High electric field in the multiplication layer

 LGADs have intrinsic modest internal gain (10-50)
 G = 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃
(collected charge of LGAD vs same size PiN)

 Better signal to noise ratio, sharp rise edge
 Allows thin detectors (50 μm, 35 μm, 20 μm)

 Thinner detectors have shorter rise time and less Landau 
fluctuations

 Time resolution < 30 ps

 Several vendors of thin LGADs under study
 HPK (Japan), FBK (Italy), CNM (Spain), BNL (USA), NDL (China)



HGTD, ATLAS and LHC high luminosity
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 LHC: 14 TeV proton-proton collider at CERN (Geneva)
 ATLAS: one of the four main experiments at the LHC
 General purpose detector for discovery of new physics and 

precise measurements
 LHC will be upgraded in 2026 to High Luminosity LHC (HL-LHC) 

 Instantaneous luminosity higher than present conditions 

 ATLAS detector will be upgraded for HL-LHC
 HGTD: High Granularity Timing Detector

 2 disk of LGAD detectors in the forward region
 Provide timing measurements of tracks
 4fC of collected charge (Gain ~8)
 35 to 70 ps of time resolution on hits (less on tracks)
 Radiation hardness up to 2.5 � 1015Neq
 https://cds.cern.ch/record/2719855

 CMS will also be upgraded with an end-cap timing layer (ETL)
 http://cds.cern.ch/record/2667167

 HGTD and ETL are the first application of LGADs in HEP

HGTD

https://cds.cern.ch/record/2719855
http://cds.cern.ch/record/2667167


Radiation damage on LGADs
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 Most widely accepted radiation damage explanation 
for LGADs is acceptor removal
 M. Ferrero et al. arXiv:1802.01745, G. Kramberger et al. JINST 10 (2015) P07006

 Radiation damage for LGADs can be parameterized
 𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐

 Acceptor creation: 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙
 By creation of deep traps

 Initial acceptor removal mechanism: 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐
 Ionizing radiation produces interstitial Si atoms 
 Interstitials inactivate the doping elements (Boron) via 

kick-out reactions that produce ion-acceptor complexes
 Reduction of doping  reduction of gain

 C-factor (acceptor removal constant) 
depending on detector type

Multiplication layer

Bulk

Y. Zhao et al. 10.1016/j.nima.2018.08.040

http://cds.cern.ch/record/2719855/

𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐

Reduction of gain
With fluence



Mitigation of radiation damage: past productions
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 FBK-UFSD3 (Fondazione Bruno Kessler) sensors
 55 um thin bulk sensors (nominal thickness)
 Carbon implantation in the gain layer

 Carbon is electrically inactive (no effect pre-irradiation)
 Catch interstitials instead of Boron

 Reduction of acceptor removal after irradiation

R. Padilla et al. https://doi.org/10.1088/1748-0221/15/10/P10003
S. Mazza et al. https://doi.org/10.1088/1748-0221/15/04/T04008
M. Ferrero et al. 10.1016/j.nima.2018.11.121
Y. Zhao et al. 10.1016/j.nima.2018.08.040

 HPK-HGTD1 (Hamamatsu Photonics) sensors
 50 um thin bulk sensors (nominal thickness)
 Thin but highly doped gain layer

 Higher initial doping concentration 
 Takes more time to be inactivated

 Deep gain layer
 High field for larger volume

Carbon
No Carbon

Effect of deeper gain layer

ShallowDeep

https://doi.org/10.1088/1748-0221/15/10/P10003
https://doi.org/10.1088/1748-0221/15/04/T04008


Issues in the past productions
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Both types of sensors show good performance up to 
2.5E15 Neq (HGTD maximum fluence) however

 FBK-UFSD3 sensors
 55um nominal thickness  minimum time resolution ~40-50ps
 Carbon level not optimized
 Shallow gain layer

 HPK-HGTD1 sensors
 Deep gain layer too doped before irradiation
 Gain too high (>30 after full depletion)
 Bad behavior at 20C (time resolution >50ps)

 Not working properly at -30CBad pre-rad time resolution (20C)



Mitigation of radiation damage: new productions

16-Feb-21Dr. Simone M. Mazza - University of California Santa Cruz7

 HPK-HGTD2 sensors
 Optimization of doping concentration in the gain layer
 4 splits with ~2% step down in doping concentration from HPK-3.2 (previous production) 

Min doping Max doping



Mitigation of radiation damage: new productions
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 FBK-UFSD3.2 sensors
 Optimization of the Carbon level
 Thinner bulk (better time resolution)
 Combination of deep gain layer and Carbon implantation

 Wafers under study (nominal thicknesses):
 W7  55um bulk, Carbon (same as previous production)
 W14  45um bulk, Carbon, Deep gain layer
 W19  45um bulk, 0.6*Carbon, Deep gain layer, high doping



Sr90 charge collection
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Sensor testing – Sr90 telescope
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 Dynamic laboratory testing
 Using MiP electrons Sr90 β-source (β-telescope)

 Signal shape, noise, collected charge, gain, time resolution

 Sensors mounted on analog readout board designed at 
UCSC (Ned Spencer, Max Wilder, Zach Galloway) with fast amplifier 
(22 ohm input impedance, bandwidth > 1GHz)
 Readout by fast oscilloscope

 Trigger sensor (fast timing trigger) on the back
 DUT (Device Under Test) is read in coincidence

 Setup in climate chamber to run cold and dry
 20C/-30C

LGAD



HPK LGAD performance before irradiation
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 HPK successfully tuned the gain layer to optimize performance before irradiation
 Starting point (highest gain): HPK-3.2
 At -30C HPK-3.2 has time resolution of 90 ps next split down (split 1) is better: 50ps
 Even better time resolution for following splits

16-Feb-21Dr. Simone M. Mazza - University of California Santa Cruz

Decreasing doping

HPK-3.2

HPK-HGTD2 split 1

14



HPK LGAD performance after irradiation split 1 and 4
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 Showing performance for HPK split 1 (highest doping) and split 4 (lowest doping)
 Distance between gain curves is more or less constant (at 2.5E15 Neq are very similar)
 Time resolution is better for split 4 at the beginning but at 4E14 Neq the two splits are the same



FBK LGAD performance after irradiation
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 Combination of deep gain layer, high doping and Carbon implantation show exceptional performance 
 FBK USFD3.2 W19 (deep gain layer, Carbon), compared with W7 (shallow gain layer, Carbon, same type as FBK old production UFSD3)
 (Missing pre-rad data for W19, showing 4E14 Neq instead)

 10 fC of collected charge reached at the maximum fluence of 2.5E15 Neq
 Better time resolution at higher fluence

16-Feb-21Dr. Simone M. Mazza - University of California Santa Cruz14



FBK LGAD performance at maximum irradiation
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 FBK UFSD3.2 sensors show the great 
potential of deep gain layer and 
Carbon implantation

 FBK3noC (no carbon) has the worse 
performance

 FBK3+C and FBK UFSD3.2 (same structure 
with Carbon) have much better performance

 FBK UFSD3.2 W14 with deep gain layer is 
similar to FBK3+C but has thinner bulk 
(lower initial charge)

 FBK UFSD3.2 W19 (highly doped, deep gain 
layer, optimized Carbon) has the best 
performance
 W19 has a higher starting point in gain 

layer doping to increase the radiation 
reach

16-Feb-21Dr. Simone M. Mazza - University of California Santa Cruz14

Add Carbon

Thinner bulk, 
deep gain layer

Thinner bulk, deep gain layer
Optimized carbon level
Increased doping concentration

Same type



HPK-FBK best type comparison
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 Characterization similar to HGTD TDR
 https://cds.cern.ch/record/2719855

 Chosen Vop (operating voltage) per fluence 
per type of sensor that gives good 
performance

 Both sensors can fulfill ATLAS HGTD 
requirements 
 CC>4fC, time resolution <50 ps, 
 power <100mW/cm^2

 FBK UFSD3.2 W19 shows great behavior: 
 Lower voltage for similar charge, better time 

resolution and lower power dissipation

Dr. Simone M. Mazza - University of California Santa Cruz14

HPK HGTD-2 split 1
Similar to HPK-3.2 

FBK UFSD3.2 W19
much better than 
FBK UFSD3

https://cds.cern.ch/record/2719855


Probe station measurements
Many thanks to Nikita Tournebise!
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Gain layer and CV
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 Capacitance over voltage (CV)
 Measured on probe station at 20C

 Study of the “foot” (flat region before full 
depletion) for LGADs on 1/C2

 Bulk doping concentration proportional to 
the slope in 1/C2

 After radiation damage the “foot” changes 
proportionally to the gain layer doping

 Example: 1/C2 for HPK HGTD2 split 1

Foot change



 FBK UFSD3.2
 Both W14/W19 have a higher starting point than W7 

because of the deep gain layer
 W19 has the highest starting point (highest doping) and 

10% lower c-factor (optimized carbon level) than W14

 HPK-HGTD2
 Same gain layer geometry for split 1 and split 4
 Similar fits and c-factors
 But with different starting point

1/C^2 Foot vs fluence Fitted with

17

Split 1
Split 4



Gain layer vs. Fluence: comparison
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 Carbon seems to give significant improvement: C-factor is about 2-3 times smaller for FBK
 HPK-HGTD2 still has a higher initial doping concentration

16-Feb-21Dr. Simone M. Mazza - University of California Santa Cruz

HPK starts higher (highly doped gain layer) 
but decreases faster

FBK has lower variation (lower c-factor) thanks to Carbon

18



Conclusions
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 To increase the radiation hardness of LGADs:
 Carbon
 Deep gain layer
 Combination of the two

 LGADs from previous production of HPK and FBK show 
reasonable performance up to 2.5E15Neq (Max fluence at 
HGTD)
 However both productions had issues

 New HPK production with tuned gain layer shows good 
behavior before and after irradiation

 FBK sensors with deep gain layer and Carbon show 
exceptional performance
 Lowering the needed bias voltage at maximum fluence for the 

timing layers of ATLAS/CMS at HL-LHC
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Backup
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Irradiation campaigns on LGADs
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 Irradiation campaign on LGADs
 Sensors were irradiated at 

 JSI (Lubiana) with ~1 MeV neutrons
 PS-IRRAD (CERN) with 23 GeV protons
 Los Alamos (US) with 800 MeV protons
 CYRIC (KEK, Japan) with 70 MeV protons
 X-rays at IHEP (China)
 Gamma irradiation (Sandia, Uni. of new Mexico)

 Fluence: 1E13 Neq/cm2 1E16 Neq/cm2

 Ionizing dose up to 4MGy

 Waiting for the FNAL facility!



TCT IP gap measurements
Many thanks to Basil Darby!
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FBK UFSD3.2 TCT IP gap measurements 
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 Measurement of the Inter-pad (IP) gap in arrays of FBK 
UFSD3.2 arrays using a TCT laser

 Array tested
 Type 4: safe, nominal IP 24 um
 Type 10: super safe, nominal IP 49 um

 Fit using error function.
 Inter-pad gap measured as distance from each 50% point.
 Sensors measured after irradiation
 Next: measure sensors before irradiation
 In the past increased IP gap was observed before 

irradiation (other groups will show results for this new 
production)
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W12
W19
W14
W14

After irradiation T10 array (super-safe) shows IP gap of 35-50 um

After irradiation T4 array (safe) shows IP gap of 25 um

Both types show a fairly flat behavior vs voltage
(~5um variation)

Presenter
Presentation Notes
223 228, W14
226 W12
282 W19



Gain layer and CV
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 Capacitance over voltage (CV)
 Study doping concentration profile and full depletion 

of the sensor 
 Study of the “foot” for LGADs on 1/C2: 

 1/C2 flat until depletion of multiplication layer
 Proportional to gain layer active concentration

 Bulk doping concentration proportional to the 
slope in 1/C2

 After radiation damage the “foot” changes 
proportionally to the gain layer doping

“foot” changes with
radiation damage



Gain layer vs. Fluence: The Effect of Carbon
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HPK 3.2
FBK Carbon  Acceptor removal constant (C) is different for 

different types of sensors
 The FBK Carbon sensors has smaller range for 

“foot” voltage
 The HPK 3.2 shows a much larger declination and 

broader range of “foot” voltages
 Carbon seems to give significant improvement 

where C is about factor 3 smaller for FBK
 However HPK has a much higher initial foot 

due to the buried gain layer
16-Feb-21Dr. Simone M. Mazza - University of California Santa Cruz
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LGADs timing resolution
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Sensor time resolution main terms

 Time walk: 
 Minimized by using for time reference the % CFD 

(constant fraction discriminator) instead of  time 
over threshold

 In HGTD electronics TOA (Time of Arrival) of the 
signal is corrected with TOT (Time over threshold)

 Landau term: 
 Reduced for thinner sensors (50,35 μm)

 Jitter:
 Proportional to �1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 Reduced by increasing S/N ratio with gain
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Variation of performance after irradiation
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 HPK sensors irradiated with neutrons at JSI (Lubjiana)
 Variation of performance of the order of 10%: in the voltage to obtain X fC of charge (or gain X)
 Seen both in charge collection and in CV



Variation of performance after irradiation
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 Correlation of voltage to reach gain of 8 with foot from CV shows that the variation is real
 Correction using the correlation to the performance
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