

16th Trento Workshop on Advanced Silicon Radiation Detectors

Data Driven LGAD Mortality Studies

The art of (not) burning a sensor

Evangelos – Leonidas Gkougkousis, Victor Coco

CERN

EP

Trento – February 18th, 2021

•Damaged sensor list

Unrecoverable sensors (SPS Testbeams)

Manufacturer	Run	Wafer	Structure	Rad. Fluence	Species	GR	Discharge	Annealing	Conditions	
						Grounded	marks			
CNM	10478	W4	S1017	3e15	n	no	Pad	0 min	Pion beam	
CNM	10478	W4	S1058	1e15	р	no	Pad	0 min	Pion beam	\succ
CNM	10478	W4	S1102	6e15	n	no	Pad	0 min	Pion beam	ノ
CNM	10478	W5	S1036	6e14	р	yes	GR	0 min	Pion beam	2
CNM	10478	W5	S1075	3e35	р	yes	GR	0 min	Pion beam	>
CNM	10478	W5	S1117P	6e14	р	yes	GR	0 min	Pion beam	J
CNM	10924	W6	S1028	1e14	р	yes	none	0 min	Pion beam)
CNM	10924	W6	S1026	1e15	р	yes	GR	0 min	Pion beam	>
CNM	10924	W6	S1025	3e15	р	yes	GR	0 min	Pion beam	ノ

April 2018 Test Beam

June 2018 Test Beam

September 2018 Test Beam

Sensors at CNM for further investigation

Visual inspection

Post-mortum optical microscopy and conditions

Normal

April 2018, 120GeV pion beam, Rate issues @ 620V -30°C, N₂ (neutrons 6e15 n_{eq}/cm²)

April 2018, 120GeV pion beam, Rate issues @ 580V -20°C, N₂ / -30°C completed (protons 1e15 n_{ea}/cm²)

June 2018, 120GeV pion beam, Rate issues @ 620V, -30°C, N₂ (protons 6e14 n_{eg}/cm²)

Carbon

June 2018, 120GeV pion beam, Rate issues @ 600V, -30° C, N₂ (protons 3e15 n_{eg}/cm²) **Died during alignment**

June 2018, 120GeV pion beam Rate issues @ 600V, -30° C, N₂ (protons 6e14 n_{eq}/cm^2)

Gallium

September 2018, data taking

September 2018, data taking Rate issues @ 590V -30°C, N₂ (protons 3e15 n_{eq}/cm^2)

GR not grounded – Pad Discharge

GR grounded – **GR** Discharge

18 / 2 / 2021

Visual inspection

Post-mortum optical microscopy and conditions

Sensors damaged during test beam

Lab vs testbeam maximum voltage limits

Normal	Test Beam	Lab	
Neutrons 3e15 n _{eq} /cm ²	620 V —	→ 660 V	
Neutrons 6e15 n _{eq} /cm ²	620 V —	→ 570 V	Stopped because of auto triggering
Protons 1e15 n _{eq} /cm ²	580 V —	→ 660 V	
Carbon			
Protons 6e14 n _{eq} /cm ²	600 V —	→ 660 V	
Protons 3e15 n _{eq} /cm ²	600 V —	→ 660 V	
Gallium			
Protons 1e14 n _{eq} /cm ²	220 V —	→ 210 V	Stopped because of auto triggering
Protons 1e15 n _{eq} /cm ²	590 V —	→ 520 V	Stopped because of high leakage current
Protons 3e15 n _{eq} /cm ²	590 V —	510 V	Stopped because of periodic discharges

Rate Issue

Lab vs Testbeam

Lab measurements – ⁹⁰Sr source

- ✓ Multi-energetic electron spectrum
- ✓ E_{max} at 2.28MeV
- ✓ Average energy ~ 939 keV from ⁹⁰Y decay
- ✓ Average energy ~ 188 keV from ⁹⁰Sr decay

Test beam measurements

140 GeV p⁻, negtive polarity or 40 GeV p⁻, positive polarity or 160 GeV p⁻, positive polarity

- ✓ SPS pion beam
- ✓ Quasi-monochromatic beam
- ✓ 1% energy dispersion

Radiative losses (Brem mainly) ignored

Energy loss in 50µ m Si

939 keV electrons:

 $m_{e^{=}} \approx 0.511 \ MeV \rightarrow \beta \cdot \gamma \approx 2$

40 - 140 GeV pions:

 $m_{pion} \approx 120 \; MeV \rightarrow \beta \cdot \gamma \approx 333 \; - \; 1333$

Rate Issue

Normalized Landau MPVs to N _{ma}
Garfield++, 5k events for 50µm

Incoming beam	Electrons	fQ
⁹⁰ Sr	3891	0,62
160 GeV $\pi^{+/-/0}$	3310	0,53
140 GeV $\pi^{+/-/0}$	3300	0,53
40 GeV $\pi^{+/-/0}$	3288	0,53
80 GeV $\pi^{+/-/0}$	3293	0,53

✓ For an 1 x 1 mm² sensor corresponds to max instantaneous charge introduction rate of:

$$R_{c} = G \times q_{prim.} \times R_{ev.} \frac{S_{LGAD}}{S_{trigg}}$$

 $132.5 \ pC/s < R_c < 662.5 \ pC/s$ (Gain of 5 here)

Carbon Proton Jrradiated

Fluence A	⁹⁰ Sr Charge (Q)			
6e14		600	-30	2,74E-15
3e15	1,376-14	600	-30	2,16E-15

Boron Proton Irradiated

Fluence Acce	eptor removal Co	eff. Voltage 7	emp (°C)	⁹⁰ Sr Charge (Q)
1e15	2,25E-14	580	-20	2,40E-15

Boron Neutron Irradiated

Fluence Accep	otor removal Co	eff. Voltage 7	Гетр (°С)	⁹⁰ Sr Charge (Q)
3,00E+15		620	-30	1,92E-15
6,00E+15	2,25E-14	620	-30	$>\!$

Depletion Voltage

Pad $\left|\frac{\partial I}{\partial V}\right|$ Estimation

- ✓ Gain layer only present in pad region (GR region implanted with diffused n)
- \checkmark Additional p-implantation gain layer creates secondary depletion region
- ✓ Mott–Schottky equation \rightarrow rapid leakage current variation at depletion
- ✓ **δ-function** form of $|\partial I / \partial V|$ at depletion point convoluted with instrument resolution (Gaussian) approximated by narrow width Gaussian Gkougkousis V., RD50
- ✓ Depletion voltage determined by mean of Gaussian fit at depletion voltage
- ✓ Performed at -10°C, -20°C & -30°C with independent fits on each temperature \rightarrow 90 Gaussian Fits

Gkougkousis V., RD50 Workshop Talk, November 2019: link

Gain depletion Voltage					
Fluence (n _{eq} /cm²)	-20 °C	-30 <i>°</i> C			
unirrad.	-34	-34			
3e14	-25	-25			
7e14	-20	-20			
1e15	-15	-15			
3e15	-6	-6			
5e15	0	0			

Breakdown Voltage

Current Multiplier

- ✓ Measure total leakage current (-10°C, -20°C, -30°C)
- Select a stable voltage range where behaviour follows exponential law
- ✓ Define common for all temperatures stable voltage range, after depletion and much before breakdown
- ✓ Perform exponential fit requesting $R^2 ≥ 99\%$ (same range as in the gain reduction fits same constraints)
- \checkmark Calculate the multiplier with respect to the expected current
- ✓ Define breakdown in multiplier value (Is it really exponential??)

Un-irradiated: $I_{pad}^{\Phi=0} = I_s \times \left(e^{\frac{eV}{nkT}} - 1\right) \times G(e^V, T)$ Irradiated: $I_{pad}(\Phi) = (I_{pad}^{\Phi=0} + \alpha \Phi) \times G^*(e^V, T, \Phi)$

Function of acceptor removal, exponential to fluence and voltage plus a linear term

Fluence (n_{eq}/cm^2)

Fluence (cm⁻²)

Breakdown Voltage

- \checkmark Independent fit for each temperature
- ✓ Identical fit regions across all temperatures
- \checkmark Identical fit regions for same fluence across all three implants

Constraints

Breakdown Voltage

- \checkmark Carbon and boron are compatible
- ✓ Gallium presents higher breakdown voltage (most possibly due to process variation)
- ✓ All implants compatible with sigmoid approach
- ✓ Highest breakdown voltage after irradiation independent of gain exclusively process dependent

•Were our sensors in breakdown?

Stability Estimation

Model

Exponential Fit: $I=b\cdot m^V$

For all points N inside fitting region

Stability defined as average deviation between estimated and real derivative:

Standard deviation of Stability

$$D = \frac{\left|\frac{\mathrm{d}I}{\mathrm{d}V}\right|_{i} - \frac{\Delta I}{\Delta V}\right|_{i}}{\sigma_{\sigma}}$$

Analytical derivative: $\frac{dI}{dV}\Big|_{i} = \frac{\left|b \cdot m^{V_{i+1}} - b \cdot m^{V_{i}}\right|}{|V_{i+1} - V_{i}|}$ Actual Derivative: $\frac{\Delta I}{\Delta V}\Big|_{i} = \frac{|I_{i+1} - I_{i}|}{|V_{i+1} - V_{i}|}$

 $\bar{S} = \frac{1}{N} \sum_{N} \left| \frac{\mathrm{d}I}{\mathrm{d}V} \right|_{i} - \frac{\Delta I}{\Delta V} \right|_{i}$ $\frac{\sum_{N}|s-\bar{s}|^2}{N}$ $\sigma_s =$

> ✓ Probe local stability with respect to normal deviation

- ✓ Sensitive only to local variations
- ✓ Not dependent on breakdown, only on point to point instabilites

Stability Estimation

Stability Estimation

- ✓ Decrease of the instability point associated with a breakdown behavior with fluence increase
- ✓ Fit demonstrates almost linear behaviors for same type sensors
- With a less than 10 σ allowed point one is relatively safe, but this leads to decreased bias voltages
- \checkmark More points necessary for additional study
- ✓ Relatively high fluence sensors reach high instability points sooner than lower fluence with respect to their estimated breakdown

Additional Ideas and next steps

A first study of test beam damaged sensors is presented

- An association with local HV stability is explored and shown to decrease with irradiation
- Damaged sensors are proven not to be in breakdown at damage point
- An association with introduction rates is made but durther studies necessary
- Next steps
 - Dedicated "sensor series" for mortality studies
 - Beam studies might be necessary (more than laser or ⁹⁰Sr)
 - If polarization or trapping effects, one should be able to prove with CVs or varied frequency lasr