16th "Trento" Workshop on Advanced Silicon Radiation Detectors

16-18 February 2021

Performance of irradiated FBK 3D sensors for the ATLAS ITk pixel detector

ATLAS

INFN

Alessandro Lapertosa

Co-authors: Leonardo Vannoli, Claudia Gemme, Gian Franco Dalla Betta, Gianluca Alimonti, Giuseppe Gariano, Alessandro Rovani

Introduction

- Inner Tracker (ITk): a new silicon tracking detector in preparation for the ATLAS upgrade at the HiLumi-LHC
- Pixel: R&D phase to find the best solution, as a compromise between radiation tolerance and performance
- Details of the latest design version: https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/ITK-2020-002/
 - 450 5 layer of pixels: [uuu] . Preliminary ITk Layout – ATLAS-P2-ITK-23-00-00 ATLAS Simulation • **L4**: Planar sensors 400 η = **1.0** η **= 2.0** L3: Planar sensors 350 L2: Planar sensors ۲ n = 3.0 300 **L1**: Planar sensors 250 LO: 3D sensors • Barrel: $25 \times 100 \ \mu m^2$ 200 Endcap: $50x50 \mu m^2$ 150 n = 4.0 Barrel at 34 mm from collisions 100 Dose up to 1.8e16 n_{eq} /cm² LO L0 triplet modules barrel: 288 1500 2500 500 1000 2000 3000 3500 **Barrel** (stave) Endcap (rings) • endcap: 900 z [mm] 18/02/2021

FBK pixel 3D sensors for ITk L0

- L0 of the ITk Pixel detector will be equipped with 3D sensors
 - $25 \times 100 \,\mu\text{m}^2$ in the barrel \rightarrow linear triplet modules to be placed on stave
 - 50x50 μ m² in the endcap \rightarrow curved triplet modules to be placed on ring
- In the last years, several R&D production of wafers by FBK
 - Batch 2: Mask aligner, 130 μm active thickness
 - 5 wafers: 2 to Leonardo and 3 to IZM
 - Batch 3: Stepper, 150 µm active thickness
 - 11 wafers: 2 to Leonardo and 2 to IZM
 - Sensors 1x2 cm² compatible with the RD53A chip
 - Assembled in modules (3D sensor + RD53A chip) on card (SCC)
- In this talk, a summary of results from FBK 3D sensor irradiated modules
 - Moreover, also diodes test structures irradiated and tested
- Meanwhile FBK, CNM and SINTEF foundries are preparing for pre-production
- ATLAS institutes are preparing for ITk module assembly and test
 - Briefly introducing the triplet module and an assembly method (Genoa)

25×100 µm², 1E

18/02/2021

A. Lapertosa et al.

3

6 modules irrad. to 1e16 n_{eq}/cm^2

- Recent results from 6 RD53A modules built from batch 3 sensors (150 μm active thickness)
 - Irradiated uniformly at CYRIC (70 MeV protons)
 - Fluence: 1.0e16 n_{eq}/cm²
 - TID: 700 Mrad
- 2 sensors from wafer 27 (thinned)
 - F03_27_25x100-1E_D4.1 \rightarrow damages to chip WBs \rightarrow in lab, measured IV
 - F03_27_50x50-1E_E6.5 \rightarrow damages to chip WBs \rightarrow in lab, measured IV
- 2 sensors from wafer 27 (thinned)
 - F03_27_25x100-1E_D10.4 \rightarrow sensor OK, but problematic chip \rightarrow only IV
 - F03_27_25x100-1E_D11.2 \rightarrow sensor high current, while chip OK \rightarrow only IV
- 2 sensors from wafer 30 (not thinned)
 - F03_30_50x50-1E_E3.3 \rightarrow sensor and chip OK \rightarrow IV and testbeam data \rightarrow
 - F03_30_25x100-1E_D9.5 \rightarrow sensor and chip OK \rightarrow IV and testbeam data \rightarrow
- Testbeam data results shown today for E3.3 and D9.5
 - Data taking at DESY in October 2020

18/02/2021

Tuning

- Data taking at DESY II 6 GeV electron beam
- Chip tuning: Differential Front End
- Top right corner: bumps damaged \rightarrow no hits recorded there

RD53A Differential Front End

A. Lapertosa et al.

Efficiency

- Hit detection efficiency higher than 97% above 90 V bias
 - Confirmation of many experimental results from other pixel modules irradiated to 1.0e16 n_{eq}/cm²
 - Testing modules irradiated to 1.0e16 n_{eq}/cm² has become a routine
 - Planning an irradiation campaign up to 2.0e16 n_{eq}/cm² at Los Alamos in June 2021

efficiency

- Unexpected behaviour of D9.5
 - Decreasing efficiency at higher V_{eff}
- Let's take a look at the charge collection!

D9.5 ToT tuning 10ke @ 10BC

Cluster

ToT MPV

6.8

8.8

V_{eff} [V]

36.0

85.0

Charge

[ke]

5.2

8.6

Eff [%]

84.9

97.5

- D9.5 (25x100 μm²) module, ToT tuning: 10ke @ 10BC
- ToT vs charge calibration extrapolated by injecting 3-to-10ke charge
- Cluster ToT converted in charge exploiting the calibration
- Higher V bias \rightarrow cluster ToT \rightarrow collected charge \rightarrow efficiency
 - At 97% efficiency, collected 8.5 ke charge (75% of 11ke expected)

E3.3 - D9.5 ToT tuning: 10ke @ 7BC

- Again, exploiting the calibration curve, the collected charge was extrapolated from the cluster ToT
- Tuning of D9.5 was not effective: ToT & charge decreased when increasing V bias \rightarrow could explain eff. drop

- 3D sensor + RD53A chip modules
- Irradiated at different facilities
- Different annealing times

- 3D sensor + RD53A chip modules
- Irradiated at different facilities
- Different annealing times
- IV measured in different conditions:
 - Dots: in lab, -25°C
 - Squares: at testbeam, -45°C

- 3D sensor + RD53A chip modules
- Irradiated at different facilities
- Different annealing times
- IV measured in different conditions:
 - Dots: in lab, -25°C
 - Squares: at testbeam, -45°C
- Not visible effect of active thickness:
 - Blue: Batch 2, 130 µm a.t.
 - Red: Batch 3, 150 µm a.t.

- 3D sensor + RD53A chip modules
- Irradiated at different facilities
- Different annealing times
- IV measured in different conditions:
 - Dots: in lab, -25°C
 - Squares: at testbeam, -45°C
- Not visible effect of active thickness
- Negligible effect of additional dose:
 - Blue: 0.5e16 n_{eq}/cm²
 - Red: 1.0e16 n_{eq}/cm²

- 3D sensor + RD53A chip modules
- Irradiated at different facilities
- Different annealing times
- IV measured in different conditions:
 - Dots: in lab, -25°C
 - Squares: at testbeam, -45°C
- Not visible effect of active thickness
- Negligible effect of different dose
- Not significant effect of pixel size:
 - Blue: 25x100
 - Red: 50x50

Power dissipation of irr. sensors

• 3D sensor + RD53A chip modules dissipation [mW/cm²] Irradiated at different facilities 35 Different annealing times 30 IV measured in different conditions: Red dots: in lab, -25°C 25 Power (Blue squares: at testbeam, -45°C 20 **Power dissipation:** Not possible to disentangle effects 15 Some early breakdowns \rightarrow avoid! Most IVs increase around 100-150 V 10 Power diss. still below 20 mW/cm²

18/02/2021

Diodes: IV and power dissipation

- 2 mm² diodes (n⁺ columns shorted together) were produced together with modules inside FBK wafers
 - Irradiated to 1.0 and 1.5e16 n_{eq}/cm² with neutrons at JSI reactor, Lubiana
 - IV measured at -25°C (ITk operation temperature) in climate chamber
 - Spread between different diodes higher than the effect of higher dose (1.0 to 1.5e16 n_{eq}/cm²)
 - $25 \times 100 \,\mu\text{m}^2$ performs better with respect to $50 \times 50 \,\mu\text{m}^2$ (lower current \rightarrow lower power dissipation)
 - Power dissipation around 20 mW/cm² in the range 100-150 V of bias voltage (> 97% effic. since 80-90 V)
 - Small size diodes, contribution of the edges \rightarrow 20 mW/cm² limit is therefore conservative

18/02/2021

A. Lapertosa et al.

Triplet module assembly in Genoa

- While FBK, CNM and SINTEF produce pre-production sensors
- ITk institutes involved in the R&D on module assembly & test
- 6 teams: Genoa, Milan, Trento, Barcelona, Oslo, Bergen
- Assembly is done by gluing 3 bare modules to a flexible PCB
 - High precision in the bare module placement: ~50 μm
 - Uniform layer of Araldite 2011
 - Achieved by stamping the glue on the flexible PCB
 - Flexible PCB is placed on top of the 3 bare modules
- As soon as the assembly procedure is verified
 - First production of triplet modules (sensor + RD53A)
 - Then, modules with 3D sensor + ITkPixV1 chip will follow

18/02/2021

Summary

- In the last years, several 3D sensor wafers were produced by FBK for R&D towards HiLumi-LHC application
- 1x2 cm² sensors bonded to RD53A chips were irradiated and tested
- Both 25x100 and 50x50 μm² sensors irradiated to 1.0e16 n_{eq}/cm² reach 97% detection efficienct at ~90V
- 97% efficiency is reached when the sensor collect at least ~8ke
 - This corresponds to a charge collection efficiency of the 70% (11ke deposited in 150 μm a.t. sensor)
- Leakage current very similar between 0.5 and 1.0e16 n_{eq}/cm²
 - Seen also in diodes irradiated to 1.0 and 1.5e16 n_{eq}/cm² (spread larger than effect of the radiation)
- At 1.0e16 n_{eq}/cm², operating voltage would be around 100-150 V
 - At this voltage, power dissipation below 20 mW/cm²
 - More systematical study with diodes (small area 2x2 mm²)
 - Clearly visible that 25x100 dissipate less than 50x50 μm^2
- INFN Genoa started R&D for assembling triplet modules
- In the next months few triplet prototypes will be assembled
- Then, the pre-production of ITkPixV1 chip modules will follow
 - Ongoing pre-production of 2x2 cm² 3D sensors
 - FBK and SINTEF focusing on 50x50 μm^2
 - CNM focusing on 25x100 μm^2

Some of these results in a summary paper just accepted: https://www.frontiersin.org/articles/10.3389/fphy.2021.624668/abstract

frontiers

Novel 3D pixel sensors for the upgrade of the ATLAS Inner Tracker

Stefano Terzo ^{1,*}, Maurizio Boscardin ², Juan Carlotto ¹, Gian-Franco Dalla Betta ^{3,4}, Giovanni Darbo ⁵, Ole Dorholt ⁶, Francesco Ficorella ², Giuseppe Gariano ⁵, Claudia Gemme ⁵, Giulia Giannini ¹, Sebastian Grinstein ^{1,7}, Andreas Heggelund ⁶, Simon Huiberts ⁸, Angela Kok ⁹, Ozhan Koybasi ⁹, Alessandro Lapertosa ^{5,10}, Magne Elk Lauritzen ⁸, Maria Manna ¹¹, Roberto Mendicino ^{2,3,4}, Hideyuki Oide ⁵, Giulio Pellegrini ¹¹, Marco Povoli ⁹, David Quirion ¹¹, Ole Myren Rohne ⁶, Sabina Ronchin ², Heidi Sandaker ⁶, Md. Arif Abdulla Samy ^{3,4}, Bjarne Stugu ⁸, and Leonardo Vannoli, ^{5,10}