16th Workshop on Advanced Silicon Radiation Detectors Trento, 16-18 February 2021

Timespot1: A 28-nm CMOS ASIC for pixel read-out with time resolution below 20 ps.

S. Cadeddu¹

L. Frontini^{2,4}, A. Lai¹, V. Liberali^{2,4}, L. Piccolo^{3,5}, A. Rivetti², A. Stabile^{2,4}

¹ INFN Cagliari – ² INFN Milano – ³ INFN Torino – ⁴ Università di Milano, Dip. Di Fisica – ⁵ Politecnico di Torino

Outline

- The TimeSPOT Project
- Timespot1 Architecture
- Analog Front-End (AFE)
- Time to Digital Converter (TDC)
- Readout Tree
- Board for Test and Demonstrator
- Conclusions

Salt

What is the TimeSPOT Project (TIME & SPace real-time Operating Tracker)

- Project for the development of a silicon and diamond 3D tracker with timing facilities
- financed by INFN
 - 10 Italian Institutes (INFN) : Bologna, Cagliari, Genova, Ferrara, Firenze, Milano, Padova, Perugia, Torino, TIFPA
 - 60 heads, ~ 25 FTE.
 - People coming from different experiments: LHCb, ATLAS, CMS + others
- Final Target: Develop and realize a demonstrator consisting of a tracking system, with high timing resolution, integrating a thousand read-out pixels
- Some Specifications:
 - Space resolution: order 10 μm
 - Time resolution: ≤ 50 ps per pixel
 - Limited power per F/E channel (10's of μW)

• Detector Results from Test beam with Minimum Ionizing Particles (MIP):

- Discrete components analog Front-End readout used.
- σ_t ranging from 35 ps (no TOT corrections) to \sim 20 ps (CFD)
- Intrinsic time resolution (only sensor) estimated ~ 15 ps

Timespot1 Architecture

- 1024 channels, each equipped with Analog Front End and TDC
- A group of 256 channels is readout by a ROT (Read Out Tree) that addresses incoming data to 2 serializers that drive a LVDS driver each, sending data out @1.28 Gb/s
- There are 10 DACs giving Voltage references to the Front-End cells
- Different clock generator (PLL and DCOs) are implemented to give different clock sources for the circuit, with different jitter performances, to study the jitter influence on the time resolution
- All the chip is controlled/configured through I²C interfaces

Timespot1 Layout

Analog Front-End

• CSA architecture consisting in an AC-coupled inverter-like core amplifier with a double feedback path.

• Small size (50 x 15 μm^2) to leave room for the TDC and controls

- total pixel size: 50 x 55 μ m².
- 15 ps rms jitter achievable within power constraints.
- Nominal Power Consumption < 20 μ W/ch
 - ~17.5 μ A CSA bias current, that becomes ~ 30 μ A in High-Power regimes.

Simulated Jitter vs Bias Current

simulation	schem	atic	layout		
power regime	nominal	High	nominal	High	
Slew-Rate [mV/ns]	380	540	250	360	
rms noise [mV]	5.0	4.9	3.9	3.8	
jitter [ps]	13.2	9.1	15.6	10.5	
power/channel [µW]	18.2	31.5	18.6	32.9	

Full matrix simulation

TDC

- Vernier Architecture
 - DCOs Frequency: ~ 1GHz
 - DCO's switched off after meas.
- Double measure:
 - Time of Arrival (TA) Res.: ~ <u>10 ps LSB</u>
 - Time Over Thresholds (TOT) Res.: ~ <u>1ns</u>
- Max event rate: 3 MHz
- Size: 50 x 31.5 μ m².
- Output: 24 bits (TA + TOT) Serial @ 160MHz

TDC (50 x 31.5 μm²)

Power Consumption

	Tot Pwr (uW)
IDLE	20.7
Calibration	552
DAQ 3MHz	175
DAQ 1MHz	69.3
DAQ 500kHz	45.5
DAQ 100kHz	25.7
and the second s	the full statistics

Feb. 17, 2021

7

Analog Front-End Row

digital buffers

Analog Pixels Double Row 16x2 (800 x 30 μ m²)

Feb. 17, 2021

Digital Row

• Digital row 16 x 2 TDC

- Center area used for:
 - Controls

A CALLER AND A CALL

18.57.55

•

- Conf. registers
- I²C Interface
- Size: 800 x 80 μ m².
- TDC serial out on the left
- Right column for power and services

• Serial outs on the bottom where they are got from ROT.

Digital Row 16x2 (800 x 80 μm²)

Feb. 17, 2021

ReadOut Tree (ROT)

- TDC data are deserialized and memorized inside a cache
 - two caches, data are written in the first free position
 - data are labeled with a 9-bit timestamp
 - an 8-bit address is paired with data at the ROT output
- ROT output is connected with two fifos
- the DDR block generate a 640MHz DDR serial data that is connected with the LVDS link
- Max event rate: 200 kHz

A Board for Test and Demonstrator

- Size: 120 x 80 mm².
- Detector supply up to 200V
- PCB area below chip with less material
- Conceived for both ASIC tests and the demonstrator setup with the Detector on top

FMC LPC

FMC HPC

Si5341

Conclusion

- We develop an ASIC in 28-nm technology for the TimeSPOT project
- We integrate 1024 channels, each one equipped with an AFE and TDC.
- AFE jitter is below 15ps and TDC resolution is 10ps LSB (from post-layout simulation)
- Channel Power Consumption is around 40 μW
- Each channel can sustain a max event rate up to 3 MHz
- Data are output @ 1.28 Gbps
- All the chip can sustain a max event rate up to 200 kHz (all channel fired), limited by data bandwidth
- A Board was developed for both test and demonstrator.

Geometry		Timing		Pow	Power			Data Rate					
Num. Pixels	Pixel Area	Sensible Area	Detector Resolution	AFE Jitter	TDC Resolution		AFE Consumption	TDC Consumption	a. 21	Channel Max Rate	Chip Max Rate	Link Data Rate	Tot. Data Rate
1024	55x55μm².	3,098 mm ²	15 ps	15 ps	10 ps		<20 μW	<25 µW	tie()	3 MHz	200 kHz	1.28 Gbps	10.24 Gbps

TDC

• Vernier Architecture

• DCOs Frequency: ~ 1GHz

• Double measure:

- Time of Arrival (TA) Resolution: ~ 10 ps LSB
- Time Over Thresholds (TOT) Resolution: ~ <u>1ns</u>
- Max rate: 3 MHz
- Size: 50 x 31.5 μm².
- Output: 24 bits (TA + TOT) Serial @ 160MHz

DCO **RES High RES Mid-High RES Mid-Low RES Low** Period LSB RMS LSB LSB RMS Corner LSB RMS RMS 637 ps 6 ps 1,71 ps 18 5,21 25 7,50 69 20,14 MIN 20 30 31 30 42 50 ТҮР 6,05 9,23 1105 p 9 ps 2,87 ps 12,37 MAX 12 ps 4,00 ps 9,19 9,19 14,65 1210 ps

TDC (50 x 31.5 μm²)

Power Consumption

	Tot Pwr (uW)
IDLE	20.7
Calibration	552
DAQ 3MHz	175
DAQ 1MHz	69.3
DAQ 500kHz	45.5
DAQ 100kHz	25.7

Feb. 17, 2021