16th Workshop on Advanced Silicon Radiation Detectors. Trento, 16-18 february 2021

Epitaxial growth and characterization of 4H-SiC for detection applications

Alessandro Meli

La Via Francesco (CNR-imm) Muoio Annamaria (CNR-imm) Tudisco Salvatore (INFN-LNS) Trotta Antonio (ENI S.p.A.) Parisi Miriam (ENI S.p.A.) Meda Laura (ENI S.p.A.)

Summary

Introduction

- SiC physical properties
- Epitaxial Growth

4H-SiC applications

• Particles detection

Characterization

- Photoluminescence maps
- Raman spectra
- Carrier Lifetime

Influence of the defects on carrier lifetime

• Study of Different types of SF defects

Conclusion

Summary

Introduction

- SiC physical properties
- Epitaxial Growth

4H-SiC applications

• Particles detection

Characterization

- Photoluminescence maps
- Raman spectra
- Carrier Lifetime

Influence of the defects on carrier lifetime

• Study of Different types of SF defects

Conclusion

Introduction SiC physical properties

Si, $14e^-$: $1s^22s^22p^63s^23p^2$ C, $6e^-$: $1s^22s^22p^2$

Crystallographic characteristics of the SiC polytypes

Kimoto et al., Silicon Carbide Epitaxy, edited by F. La Via (Research Signpost, 2012)

Polytype	Unit cell	Lattice parameters	Inequivalent	Structure	Hexagonality
	sequence	<u>(nm)</u>	sites		rate (%)
2H-SiC	AB	a=0.3081 c=0.5048	1	hexagonal	100
				(wurtzite)	
3C-SiC	ABC	a=0.4349	1	cubic(zincblende)	0
		a=0.3081c=0.75		hexagonal (hcp)	
4H-SiC	ABAC	a=0.3081 c=1.08	2	Hexagonal closed	50
				packed (hcp)	
6H-SiC	ABCACB	a=0.3081c=1.501	3	hexagonal (hcp)	33
15R-SiC	ABCACBCABACABCB	a=0.3081 c=3.77	5	rhombohedral	40

Introduction

Epitaxial growth

Horizontal hot-wall reactor

Substrate:

- 4H-SiC (0001)
- Si face
- n-type ($\cong 10^{18} \text{ cm}^{-3}$)
- Off-axis (\cong 4°)

Silicon Carbide Epitaxy, edited by F. La Via (Research Signpost, 2012)

Parameters:

- Si/C
- T (1550-1650°C)
- Dopant gas control
- Hydrogen flow (150 slm)
- Cloride compounds
- Low pressure regime (100 mbar)

Introduction Epitaxial growth

Kimoto et al., Silicon Carbide Epitaxy, edited by F. La Via (Research Signpost, 2012), Chap. 6.

Kimoto et al., Silicon Carbide Epitaxy, edited by F. La Via (Research Signpost, 2012)

16th Workshop on Advanced Silicon Radiation Detectors. Trento, 16-18 february 2021

MMI

Summary

Introduction

- SiC physical properties
- Epitaxial Growth

4H-SiC applications

• Particles detection

Characterization

- Photoluminescence maps
- Raman spectra
- Carrier Lifetime

Influence of the defects on carrier lifetime

• Study of Different types of SF defects

Conclusion

4H-SiC applications Particles detection

0.0001

- Diamond 150 µm

Diamond 500 um

10

4H-SiC applications

Fluence calculation with Fluka

16th Workshop on Advanced Silicon Radiation Detectors. Trento, 16-18 february 2021

10

Summary

Introduction

- SiC physical properties
- Epitaxial Growth

4H-SiC applications

• Particles detection

Characterization

- Photoluminescence maps
- Raman spectra
- Carrier Lifetime

Influence of the defects on carrier lifetime

• Study of Different types of SF defects

Conclusion

Characterization Photoluminescence maps

3C PL signal

Characterization

Characterization Carrier lifetime post PL

Summary

Introduction

- SiC physical properties
- Epitaxial Growth

4H-SiC applications

• Particles detection

Characterization

- Photoluminescence maps
- Raman spectra
- Carrier Lifetime

Influence of the defects on carrier lifetime

• Study of Different types of SF defects

Conclusion

Defect Study Influence on carrier lifetime

14 000

Defect Study 430 nm (2,88 eV)

19

16th Workshop on Advanced Silicon Radiation Detectors. Trento, 16-18 february 2021

Defect Study

Defect Study

	15 mW		7,5	mW	3,8 mW		1,5 mW		0,15 mW		
Far SF	0,26 µs		0,3	2 µs	0,45 μs		0,98 µs		8,71 μs		Clean ARFA
	On SF (μs)	Out SF (μs	On SF (μs)	Out SF (μs)							
430	0,18	0,21	0,23	0,25	0,31	0,32	0,68	0,68	5,41	5,41	
490	0,14	0,23	0,17	0,27	0,23	0,29	0,49	0,49	3,46	3,46	
510	0,15	0,22	0,17	0,25	0,24	0,30	0,48	0,55	4,43	4,43	

22

0

Conclusion

Study of the epitaxial growth process

• Carrier lifetime and carrier density evaluation

• Oxidation process 1400°C - 48h

• Influence of the defects on carrier lifetime

Acknowledgment

Dott. La Via Francesco Dott. Muoio Annamaria

Prof.ssa Calcagno Lucia

Antonio Trotta Laura Meda Miriam Parisi

16th Workshop on Advanced Silicon Radiation Detectors. Trento, 16-18 february 2021

MMI

THANKS FOR YOUR KIND ATTENTION

25

