Technology Developments on Thin iLGAD Sensors for Pixelated Timing Detectors

16th Trento Workshop on Advanced Silicon Radiation Detectors February 18th 2021

Albert Doblas Moreno on behalf the RD50 iLGAD Project Instituto de Microelectrónica de Barcelona (IMB-CNM)

Instituto de Microelectrónica de Barcelona (IMB-CNM) **16th Trento Workshop (2021)**

The RD50 iLGAD Project

Proof-of-concept and radiation tolerance assessment of thin pixelated Inverse Low Gain Avalanche Detectors (ILGAD)

Contact person:

Iván Vila Instituto de Física de Cantabria (UC-CSIC) Avd. de los Castros s/n 39005 Santander Spain Tf: + 34 942201466 e-mail ivan.vila@csic.es

RD50 Institutes:

- 1. CERN, Michael Moll,
- 2. IFAE, Barcelona, Sebastián Grinstein,
- 3. IFCA-Santander, Iván Vila,
- 4. IMB-CNM, Salvador Hidalgo,
- 5. NIKHEF, Martin van Beuzekom,
- 6. UH, University of Hamburg, Erika Garutti,
- 7. UZH, University of Zurich, Benjamin Kilminster,

Other Institutes:

IGFAE-USC, Santiago de Compostela, Abraham Gallas, abrahamantonio.gallas@usc.es

<u>Michael.moll@cern.ch</u> <u>sgrinstein@ifae.es</u> <u>Ivan.vila@csic.es</u> <u>Salvador.Hidalgo@csic.es</u> <u>Martin.van.Beuzekom@cern.ch</u> <u>Erika.garutti@desy.de</u> <u>Ben.kilminster@cern.ch</u>

Outline of the Presentation

- Introduction: LGAD Technology
- Inverse LGAD as 4D Tracking Sensor
- First iLGAD Generation
- Inverse LGAD for Timing Applications
- Third iLGAD Generation (iLG3)
 - Trench iLGAD Concept
 - Fabrication Process
 - Mask Set Design
 - > Work Plan
- Conclusion and future steps

Introduction: Low Gain Avalanche Detector (LGAD) Technology

- LGAD technology is based on the APD concept.
- Multiplication layer less doped to reach a linear and moderate gain (10-30) in a high operating voltage regime.
- Low signal to noise ratio (S/N).
- LGAD is the baseline technology of the endcap MIP timing detector for the high-luminosity upgrade of the ATLAS and CMS experiments.

- Main challenges:
 - Radiation tolerance to neutrons and protons.
 - Technology long-term reliability (Safe operating voltage).
 - Large scale manufacturing yield.
 - Improve fill-factor.

Motivation for the iLGAD

Inverse LGAD as 4D Tracking Sensor

- Inverse Low Gain Avalanche Detector (iLGAD) is based on the LGAD technology.
- The main motivation for the iLGAD technology is increase the fill factor to a 100%.

LGAD TECHNOLOGY

- Segmentation of the multiplication.
- Electron collection
- Single side process

iLGAD TECHNOLOGY (iLG1)

- Multiplication extended over the electrode.
- Hole collection
- Complex double side process

iLGAD First Generation (iLG1)

- Segmentation at the ohmic contact: strip and pixels.
- Multiplication extended over all the CORE.
- P-type collector ring at the ohmic side to extract leakage current.
- JTE to protect the n+/p curvature and channel stopper to avoid the depletion reaches the end
 of the detector.
- Readout is made by the strips/pixels: holes collection.

iLGAD First Generation (iLG1)

- 4-inch 285 µm p-type high resistivity wafers.
- More than **100** fabrication steps.
- 11 photolithographic steps: double side fabrication process.
- Pad-like, strip and pixelated detectors.

μStrip iLGAD

Currás, Esteban, et al. "Inverse Low Gain Avalanche Detectors (iLGADs) for precise tracking and timing applications." *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment* 958 (2020): 162545.

iLGAD for Timing Applications

In order to use iLGADs for timing applications:

• Reduce the thickness of the detector to increase the electric field (at same voltage) in order that hole drift velocity reaches saturation.

iLGAD Third Generation (iLG3): Trench iLGAD Concept

In the iLG3 we are going to use trenches to isolate the active area.

- ✓ Multiplication region is fully isolated.
- ✓ Simpler single-side and 50% less fabrication steps.
- ✓ Devices are able to sustain higher voltages.
- ✓ Slim-edge technology.
- ✓ Optimization of the multiplication layer is independent of charge collection and cross-talk at the electrodes.

iLGAD Third Generation (iLG3): Fabrication Process

We are planning to carry out this fabrication with two different approaches:

- **Epitaxial wafer + epitaxial multiplication** 1.
- Si-Si wafers + implanted multiplication 2.

No gain layer due to diffusion of ndoped wafer to the epitaxial p-doped

Gain = 17

9

Doping Epitaxial Multiplication Layer

- 🛛 -- tEpi = 1 µm]— tEpi = 2 μm

- tEpi = 2.25 µm

• tEpi = 2.5 µm tEpi = 2.75 µm

tEpi = 3 µm tEpi = 3.25 µm O→ tEpi = 3.5 µm

🗛 tEpi = 3.75 um

+- tEpi = 5 µm

iLGAD Third Generation (iLG3): Fabrication Process

We are planning to carry out this fabrication with two different approaches:

- 1. Epitaxial wafer + epitaxial multiplication
- 2. Si-Si wafers + implanted multiplication

iLGAD Third Generation (iLG3): Fabrication Process

Trench iLGAD Fabrication Process

7 Photolithographic steps ~50 fabrication steps <u>Single-side process</u>

No CS

Centro Nacional de Microelectrónica

iLGAD Third Generation (iLG3): Mask Design

- 1. Timepix3: 55x55 pitch, 256x256 pixels
- 2. TDCpix: 300x300 pitch, 40x45 pixels
- 3. UZH-PSI: 100x100 pitch, 30x30 pixels
- **4. iStrip:** 100x100 pitch, 75 strips

Timepix3

Ð	Gamø	CMHUDDE					
1	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		••••	· · · · · ·	· · · · ·
	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	····	· · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	•••• •••• ••••	· · · ? · · · · · · · · · · · · · · · ·	· · · ? · · · · · · · · · · · · · · · ·		· · · 9 · · · · · · · · · · · · · · · ·		· · · P · · · · · · · · · · · · · · · ·
1.4.4. A.A.		· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		· · ? · · · · · · · · · · · · · · · · ·	9. 	· · · P.	· · · ? · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·
1.4.4.4.4.4.4.			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	• • • • • • • • • • • •
1.4.4.4.4.4.	· · · · · · · · · · · · · · · · · · ·				р. р. 		••••••••••••••••••••••••••••••••••••••
					••••	••••	

TDCpix

12

16th Trento Workshop (2021)

iLGAD Third Generation (iLG3): Mask Design

- 1. Timepix3: 55x55 pitch, 256x256 pixels
- 2. TDCpix: 300x300 pitch, 40x45 pixels
- 3. UZH-PSI: 100x100 pitch, 30x30 pixels
- **4. iStrip:** 100x100 pitch, 75 strips

13

16th Trento Workshop (2021)

iLGAD Third Generation (iLG3): Mask Design

- LGAD Pad Detectors (3x3 mm², 1.3x1.3 mm²)
- 3x3 Test Structures
- MOS Structures
- Technological Test Structures

3x3 TiLGAD

Pad Trench LGAD

XCSI

14

CHING CNMLDE

iLGAD Third Generation (iLG3): Work Plan

- Epitaxial and Si-Si Wafers are purchased and delivered
- Technological simulations are ready
- The process technology steps are ready
- We are designing the mask set
- Work Planning:
 - Mask Design
 - End of February 2021
 - Mask Fabrication
 - Mid-March 2021
 - Fabrication
 - Some clean room processes will not available until mid-April 2021
 - Fabrication will start at the end of April 2021
 - Fabrication will be completed by the end of September 2021

Conclusions and Future Work

- Inverse LGAD concept has been considered as 4D tracking sensor.
- First iLGAD generation (iLG1) has been successfully fabricated and show promising results.
- Third iLGAD generation (iLG3) has been described. We expect to use these sensors for timing applications.
- TCAD simulations has been performed to obtain a suitable periphery to sustain high voltages and reducing the fabrication time.
- Fabrication is going to be done with two different types of wafers: epitaxial and Si-Si wafers.
- Currently, we are designing the mask set.
- The run will start by end of April 2021.
- By end of 2021, we will have the run fully characterized and samples will be distributed.

Thank you for your attention!

Instituto de Microelectrónica de Barcelona (IMB-CNM) **16th Trento Workshop (2021)**

BACK UP SLIDES

Instituto de Microelectrónica de Barcelona (IMB-CNM) 16th Trento Workshop (2021)

iLGAD Second Generation (iLG2)

- Segmentation at the ohmic contact: strip and pixels.
- Multiplication extended over all the CORE.
- P-type collector ring at the ohmic side to extract leakage current.
- JTE to protect the n+/p curvature and channel stopper to avoid the depletion reaches the end
 of the detector.
- Readout is made by the strips/pixels: holes collection.

iLGAD Second Generation (iLG2)

- Multi-Ring structure at both multiplication and ohmic side.
- Periphery optimized for synchrotron irradiations.
- Rings at the ohmic side avoid high electric fields peaks due to a high oxide charge density created at the Si-SiO₂ interface by the X-Ray irradiation.

TCAD Simulations show a better performance in terms of breakdown for the iLG2 compared to the iLG1 with a high oxide charge density at the Si-SiO2 interface

21

Electrical Characterization Unirradiated samples

CS