

Characterization with a β-source setup of the UFSD3.2 production manufactured at FBK

16th "Trento" Workshop on Advanced Silicon Radiation Detectors, 2.18.2021

Siviero F., Arcidiacono R., Cartiglia N., Costa M., Ferrero M., Mandurrino M., Menzio L., Milanesio M., Sola V., Staiano A., Tornago M., Borghi G., Boscardin M., Dalla Betta G-F., Ficorella F., Pancheri L., Paternoster G., Centis Vignali M.

- > FBK UFSD3.2 \rightarrow 3 different Gain Layer designs
- Performance of pre-rad sensors
- Performance of irradiated sensors
- ➤ V_{irrad}(10fC) & DV(10fC)
- A study on the noise of tested sensors

- > FBK UFSD3.2 \rightarrow 3 different Gain Layer designs
- Performance of pre-rad sensors
- Performance of irradiated sensors
- > $V_{irrad}(10fC) \& DV(10fC)$
- A study on the noise of tested sensors

FBK UFSD3.2

- Latest LGAD production at FBK → <u>aim at studying different</u> <u>Gain Layer (GL) designs</u>
- Tested sensors are 1.3x1.3 mm² single pads with 45 µm active thickness
- Gain implants of tested devices are enriched with carbon
 → more on M.Ferrero's talk
- Read-out with "Santa-Cruz" board

A UFSD3.2 sensor mounted on a "Santa-Cruz" board

FBK UFSD3.2

- Latest LGAD production at FBK → <u>aim at studying different</u> <u>Gain Layer (GL) designs</u>
- Tested sensors are 1.3x1.3 mm² single pads with 45 µm active thickness
- Gain implants of tested devices are enriched with carbon
 → more on M.Ferrero's talk
- Read-out with "Santa-Cruz" board

Goal of this talk is to discuss the characteristics of the 3 GL designs implemented in this production

A UFSD3.2 sensor mounted on a "Santa-Cruz" board

Gain Layer designs

Shallow gain implant

(standard implant as previous UFSD productions)

- W3, W7

Gain Layer designs

Shallow gain implant (standard implant as previous UFSD productions)

- W3, W7

Deep CBL: diffusion at low thermal load, narrow implant

- W10, W12, W13

Deep CBH: diffusion at high thermal load, broad implant

W14, W19

Deep gain implants improves the recovering power of VBias in irradiated sensors (see <u>N.Cartiglia's talk at 34th RD50 workshop</u>)

GINFN G	Wafer	Thickness	GL depth	Pga	ain dose	Carbon dose	Diffusion
	1 45 µm standard		standard	standard		А	CHBL
shallow	3	45 µm	standard	standard standard		0.8*A	CHBL
	7	<u>55 µm</u>	standard			А	CHBL
deep CBI	10	45 µm	deep		1	0.6*A	CBL
2 Pgain doses	12	45 µm	deep		2	A	CBL
2 6415011 00363	13	45 µm	deep	Q	2	0.6*A	CBL
	14	45 µm	deep	ng dos	2	A	СВН
deep CBH 2 Paain doses	15	<u>55 µm</u>	deep	creasi	2	A	СВН
2 carbon doses	18	45 µm	deep		3	А	СВН
	19	45 µm	deep	3		0.6*A	СВН

- > FBK UFSD3.2 \rightarrow 3 different Gain Layer designs
- Performance of pre-rad sensors
- Performance of irradiated sensors
- > V_{irrad}(10fC) & DV(10fC)
- A study on the noise of tested sensors

- Excellent performances of all sensors:
 - Delivered charge > 20fC
 - \circ Time resolution ~ 30ps

- Excellent performances of all sensors:
 - Delivered charge > 20fC
 - \circ Time resolution ~ 30ps

are they all equivalent?

- We assess the performances of UFSD designs by looking at the collected charge and time resolution → but all these sensors have very similar performances, although they are not equal
- In the following, I will show what is the best way to discriminate between these designs

- For pre-rad sensors, the figures of merit can be the operating voltage and the steepness of the gain curve
 - \circ High operating voltage \rightarrow Carriers drift velocity saturated
 - Smooth gain curve \rightarrow non uniformities between sensors affect performances less

- For pre-rad sensors, the figures of merit can be the operating voltage and the steepness of the gain curve
 High operating voltage → Carriers drift velocity saturated
 - Smooth gain curve \rightarrow non phiformities between sensors affect performances less

• W10, W12 (CBL) ideal when new \rightarrow low Pgain dose

- W10, W12 (CBL) ideal when new \rightarrow low Pgain dose
 - \circ For a given gain/charge \rightarrow the higher Vbias, the better the time resolution is

- W19 (CBH) has very high doping, not the best pick when new
 - \circ Steep gain curve \rightarrow hard to operate several sensors with same performances
 - \circ Carriers drift velocity not saturated (or just close to saturation) \rightarrow can barely reach 30ps

• W 3, 7, 13, 14 in between \rightarrow work well when new, although not the best

- > FBK UFSD3.2 \rightarrow 3 different Gain Layer designs
- Performance of pre-rad sensors
- Performance of irradiated sensors
- > V_{irrad}(10fC) & DV(10fC)
- A study on the noise of tested sensors

Irradiated sensors

All wafers have been irradiated at JSI TRIGA reactor \rightarrow fluences: 8e14, 1.5e15, 2.5e15 n_{eq}/cm²

c : inverse of the fluence after which the GL initial acceptor density is reduced by a factor e

Details on	UF	-SD3.2	? radiation
resistance	in	M.Fer	rero's talk

	<i>c</i> coeff. [10 ⁻¹⁶ cm ²]	Carbon dose	Pgain dose	Wafer
shallow	1,48	А	std	3
	1,91	А	std	7
deep CBL	2,16	0.6*A	1	10
	2,06	А	2	12
	1,63	0.6*A	2	13
	2,45	А	2	14
deep CBH	1,9	0.6*A	3	19

- All sensors deliver \geq 10 fC up to 1.5e15 n_{eq}/cm² (~ 5 fC at 2.5e15)
- 30 ps are reached by all tested sensors up to 1.5e15 (~40 ps at 2.5e15)

- > FBK UFSD3.2 \rightarrow 3 different Gain Layer designs
- Performance of pre-rad sensors
- Performance of irradiated sensors
- ➤ V_{irrad}(10fC) & DV(10fC)
- A study on the noise of tested sensors

- What do we look for in an irradiated sensor? (provided it achieves the desired resolution)
 - Operation at low VBias
 - VBias increase to compensate radiation effects as low as possible
- We can introduce two additional useful parameters to evaluate irradiated sensors:
 - $\,\circ\,$ VBias required to deliver 10fC at a given fluence \rightarrow V_{irrad}(10fC)
 - VBias increase wrt pre-rad condition \rightarrow DV(10fC) = V_{irrad}(10fC) V_{pre-rad}(10fC)
- The smaller such parameters, the better the GL design

- Small V_{irrad}(10fC) = low power consumption, safe operation of the device
- Small DV(10fC) = less affected by non-uniform irradiation → VBias shift to compensate a variation in fluence is smaller in sensors with small DV

- The higher the initial doping, the lower
 V_{irrad}(10fC)
- W19 (deep CBH) has the lowest V_{irrad} but poor performance when new
- W13 (deep CBL) has higher V_{irrad} but works well when new

- The higher the initial doping, the lower
 V_{irrad}(10fC)
- W19 (deep CBH) has the lowest V_{irrad} but poor performance when new
- W13 (deep CBL) has higher V_{irrad} but works well when new
- \rightarrow High doping + deep implants provide the best V $_{\rm irrad}(10fC)$

- The higher the initial doping, the lower
 V_{irrad}(10fC)
- W19 (deep CBH) has the lowest V_{irrad} but poor performance when new
- W13 (deep CBL) has higher V_{irrad} but works well when new
- → High doping + deep implants provide the best V_{irrad} (10fC) → a too high doping affect the performances when new

Siviero F., 16th TREDI Workshop, 2.18.2021

Siviero F., 16th TREDI Workshop, 2.18.2021

Siviero F., 16th TREDI Workshop, 2.18.2021

Most radiation resistant design

- All UFSD3.2 sensors have very good radiation hardness and reach 30-40 ps up to high fluences
- V_{irrad}(10fC) and DV(10fC) are effective figures of merit:
 - Deep and highly doped implants have the lowest $V_{irrad}(10fC)$
 - Carbonated GL have much lower DV than not-carbonated
 - Deep implants have lower DV than shallow
 - Deep Low diffusion implants have lower DV than High diffusion ones

Most radiation resistant design

- All UFSD3.2 sensors have very good radiation hardness and reach 30-40 ps up to high fluences
- V_{irrad}(10fC) and DV(10fC) are effective figures of merit:
 - Deep and highly doped implants have the lowest V_{irrad} (10fC)
 - Carbonated GL have much lower DV than not-carbonated
 - Deep implants have lower DV than shallow
 - Deep Low diffusion implants have lower DV than High diffusion ones
- Summing up the above points → we conclude that the Carbonated deep Gain Layer with low diffusion (CBL) is the most radiation resistant design in the UFSD3.2 production

- > FBK UFSD3.2 \rightarrow 3 different Gain Layer designs
- Performance of pre-rad sensors
- Performance of irradiated sensors
- > V_{irrad}(10fC) & DV(10fC)
- A study on the noise of tested sensors

- "Santa-Cruz" read-out board noise ~ 1.2 mV
- High noise appears at high gain in irradiated devices

/m

RMS

measurements performed at -25 °C

- "Santa-Cruz" read-out board noise ~ 1.2 mV
- High noise appears at high gain in irradiated devices
- There is a common trend when plotting noise vs sqrt(gain*ln(fluence))
 - Noise ∝ sqrt(current)
 - current \propto gain*ln(fluence)
- \rightarrow noise does not depend significantly on the GL design
- *In(fluence)* reproduces better than *fluence* (backup) 1.50

 $\sqrt{Gain* \ln(Fluence)}$ [cm⁻¹]

Z m<

noise

RMS

measurements performed at -25 °C

- "Santa-Cruz" read-out board noise ~ 1.2 mV
- High noise appears at high gain in irradiated devices
- There is a common trend when plotting noise vs sqrt(gain*ln(fluence))
 - Noise ∝ sqrt(current)
 - current ∝ gain*ln(fluence)
- \rightarrow noise does not depend significantly on the GL design
- In(fluence) reproduces better than fluence (backup) 1.50
- Noise > read-out noise when: sqrt(gain*ln(fluence)) ≥ 5 → useful indication to prevent large noise when operating the sensors

 $\sqrt{Gain*ln(Fluence)}$ [cm⁻¹]

[m<]

noise

RMS

measurements performed at -25 °C

- "Santa-Cruz" read-out board noise ~ 1.2 mV
- High noise appears at high gain in irradiated devices
- There is a common trend when plotting noise vs sqrt(gain*ln(fluence))
 - Noise ∝ sqrt(current)
 - current ∝ gain*ln(fluence)
- \rightarrow noise does not depend significantly on the GL design
- In(fluence) reproduces better than fluence (backup) 1.50
- Noise > read-out noise when: sqrt(gain*ln(fluence)) ≥ 5 → useful indication to prevent large noise when operating the sensors

 $\sqrt{Gain*ln(Fluence)}$ [cm⁻¹]

Z m<

noise

RMS

measurements performed at -25 °C

- "Santa-Cruz" read-out board noise ~ 1.2 mV
- High noise appears at high gain in irradiated devices
- There is a common trend when plotting noise vs sqrt(gain*ln(fluence))
 - Noise ∝ sqrt(current)
 - current ∝ gain*ln(fluence)
- \rightarrow noise does not depend significantly on the GL design
- In(fluence) reproduces better than fluence (backup) 1.50
- Noise > read-out noise when: sqrt(gain*In(fluence)) ≥ 5 → useful indication to prevent large noise when operating the sensors

 $\sqrt{Gain*ln(Fluence)}$ [cm⁻¹]

- The UFSD3.2 production features 3 different Gain Layer (GL) designs:
 - Shallow (standard) carbonated GL
 - Deep carbonated GL with low diffusion \rightarrow "CBL"
 - Deep carbonated GL with high diffusion \rightarrow "CBH"
- Key point: the gain layer design has to be tailored to the specific application \rightarrow no design fits all needs
- Time resolution and radiation hardness are excellent for all sensors \rightarrow 30-40 ps up to 2.5e15 n_{eq}/cm²
 - <u>Need to find the figures of merit to discriminate the various designs</u>
- **Pre-rad sensors: look for operation at high voltage** (saturated fields, smooth gain curves) \rightarrow low Pgain dose
- Irradiated sensors: Deep Carbonated GL with low diffusion (CBL) are presently the most radiation resistant design
 - Operated at the lowest VBias and require the smallest increase of voltage to compensate the effects of radiations
- Very high noise appears at high gain in irradiated sensors
 - It does not depend on the GL design
 - Seems to be a threshold effect depending on the sensor gain and log of the fluence

Thank You!

Acknowledgements

We kindly acknowledge the following funding agencies, collaborations:

- ▷ Horizon 2020, grant UFSD669529
- ▷ Horizon 2020, grant INFRAIA
- AIDA-2020, grant agreement no. 654168
- INFN, Gruppo V
- Ministero degli Affari Esteri, Italy, MAE, "Progetti di Grande Rilevanza Scientifica"
- ▷ MIUR, Dipartimenti di Eccellenza (ex L. 232/2016, art. 1, cc. 314, 337)
- Ministero della Ricerca, Italia, PRIN 2017, progetto 2017L2XKTJ 4DinSiDe
- Ministero della Ricerca, Italia, FARE, R165xr8frt_fare

We also kindly acknowledge FBK for providing sensors and support during the testing campaign

Torino β-source setup

- DAQ and Analysis are fully automated
- Climate chamber
 - Can go down to -30°C with ± 0.1°C uncertainty
 - < 10% humidity

Torino β-source setup

- DAQ and Analysis are fully automated
- Climate chamber
 - Can go down to -30°C with ± 0.1°C uncertainty
 - o < 10% humidity</p>
- DUT + trigger Telescope, placed inside a specific structure (3d-printed) for alignment
- A trigger placed below the DUT ensures that we trigger only on MIPs
- Trigger: HPK1 1x3 mm² single pad
 - well known resolution
- ~1cm of air between DUT & trigger

Torino β-source setup

- DAQ and Analysis are fully automated
- Climate chamber
 - Can go down to -30°C with ± 0.1°C uncertainty
 - o < 10% humidity</p>
- DUT + trigger Telescope, placed inside a specific structure (3d-printed) for alignment
- A trigger placed below the DUT ensures that we trigger only on MIPs
- Trigger: HPK1 1x3 mm² single pad
 - well known resolution
- ~1cm of air between DUT & trigger
- "Santa Cruz" Read-out board made by Artel
 - single channel
 - x10 amplification (+ 20dB Cividec broadband amplifier)

using In(fluence) gives a better trend

Siviero F., 16th TREDI Workshop, 2.18.2021

Weightfield2 Simulation

Siviero F., 16th TREDI Workshop, 2.18.2021