

Edge-on technique using a high energy electron beam for characterization of irradiated pad diodes

M. Hajheidari, E. Garutti, J. Schwandt, A. Ebrahimi

Institute for Experimental Physics, University of Hamburg 16th Trento workshop

Trento workshop	
16-18 Feb 2021	

Introduction

- Luminosity in the CMS Phase-2 is up to $7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$.
- This causes a neutron equivalent fluence of $2.3 \times 10^{16} \text{cm}^{-2}$ (after 3000 fb⁻¹) in the first layer.
- The radiation damage changes the electric field and trapping times of the sensors used in the inner tracker.

The motivation of this talk

• Understanding the charge collection in highly irradiated silicon diodes

The tool of study

• Edge-on measurement using electron beam with an energy of 4.0 GeV

The performed measurements

• Charge profiles of non-irradiated and irradiated diodes at different bias voltages

After 3000 fb⁻¹

Layer	$\Phi_{\rm eq}[10^{16}{\rm cm}^{-2}]$
1	2.3
2	0.5
3	0.2
4	0.15

Trento	wor	kshop
16-18	Feb	2021

Introduction

Issues of top TCT measurements with short absorption length radiation:

- Difficult to obtain information about charge collection as a function of depth in the sensor
- Very sensitive to any inactive layers at sensor implants

Issues of edge TCT measurement with laser light:

- Changing of the beam radius as it travels into the sensor
- Sensitive to quality of the polished edge
- Commonly used for segmented sensors (complicated weighting filed)
- The measurements cannot be normalized to an absolute value

Proposal:

• Using electron beam for characterizing pad diodes with edge-on measurements

Edge TCT

Trento workshop	
16-18 Feb 2021	

Measurement setup

DESY II beam test facility:

- Electron/positron beam with energy of 1-6 GeV
- Beam energy of 4.0 GeV was chosen for the measurements
- Three telescope planes for the track reconstruction
- Intrinsic resolution of telescope $\approx 5 \ \mu m$
- Timing reference module for reducing in-time pile up
- Scintillator for providing the readout trigger ($8 \times 3 \text{ mm}^2$ triggering area)
- Rotation stage for the DUT with a precision of 0.25°(4 mrad)

Trento workshop	
16-18 Feb 2021	

Mohammadtaghi Hajheidari (University of Hamburg)

4

Measurement setup

Trento workshop 16-18 Feb 2021

Specifications of the studied diodes

- Active thickness 150 µm
- Area $\approx 25 \text{ mm}^2$
- p-type (n⁺pp⁺ configuration)
- Doping concentration $\approx 4.5 \times 10^{12} \text{ cm}^{-3}$
- Depletion voltage 75 V
- Manufactured by Hamamatsu Photonic K.K (HPK)
- Guard-ring is floating

For irradiation study

- Irradiation with 23 MeV protons at Karlsruhe Institute of Technology (KIT)
- Irradiation to equivalent fluence $\Phi_{eq} = 2$ and 4×10^{15} cm⁻² (hardness factor of $\kappa = 2.2$)

	1000
 829	.
A DESCRIPTION OF	

Trento workshop 16-18 Feb 2021

Mohammadtaghi Hajheidari (University of Hamburg)

Top view (dimensions are in micrometer)

Collected charge measurement

- Transients of the diode $(u_0(t))$ are recorded
- The average of transients in the prepulse region is subtracted from the whole (baseline correction)
- Collected charge for the diode is given as

$$Q_0 = \int_{t_0}^{t_1} \frac{u_0(t)}{G \cdot R_L} dt , \qquad R_L = 50 \ \Omega , G = 100, t_1 - t_0 = 30 \ ns$$

0.02 Prepulse region Integration window ∑^{-0.02} (i) -0.04 -0.06 -0.08 20 100 40 60 80 120 160 200 0 140 180 t [ns]

Average transient

Trento	workshop
16-18	Feb 2021

In-situ alignment procedure

Purpose of in-situ alignment:

• Find the angle in which tracks are parallel with the diode surface, i.e. $\theta = 0$

Procedure of in-situ alignment:

- Rotation of the DUT with small steps (0.25°)
- Calculate the mean collected charge of the diode
- Find the angle in which collected charge is maximum

Advantage of using this procedure:

- No track reconstruction is required
- Independent of the telescope resolution

Trento	wor	kshop
16-18	Feb	2021

On-line alignment procedure

Measurement conditions:

- Room temperature
- $V_{\text{bias}} = 100 \text{ V}$
- θ: -1.25°, 0°, +0.75°

DUT:

• Non-irradiated

Observations:

- At non-zero θ , tracks close to the surface leave the diode, therefore charge distribution has a low charge tail.
- By rotating the DUT with fine steps, the best angle of incident could be achieved.
- This procedure has to be repeated for each diode.

Trento workshopMohammadtaghi Hajheidari16-18 Feb 2021(University of Hamburg)				
	Trento workshop 16-18 Feb 2021	Mohammadtaghi Hajheidari (University of Hamburg)	9	

Charge profile, non-irradiated diode

Measurement conditions:

- Room temperature
- $V_{bias} = 100 V$
- $\theta: 0^{\circ}$
- Beam divergence: ±1 mrad

DUT:

• Non-irradiated diode

Observations:

• Charge distribution is uniform as a function of beam position with 10 μ m bin width.

Trento	wor	kshop
16-18	Feb	2021

Charge profile, non-irradiated diode

Estimation of the diode thickness:

• Fit an error function to the rising edge of profile:

$$F_1(x) = A_1\left(0.5 + 0.5 \cdot \operatorname{erf}\left(\frac{x - \mu_1}{\sqrt{2}\sigma_1}\right)\right)$$

• Fit an error function to the falling edge of profile:

$$F_2(x) = A_2\left(0.5 - 0.5 \cdot \text{erf}\left(\frac{x - \mu_2}{\sqrt{2}\sigma_2}\right)\right)$$

• Thickness of the diode is estimated as:

$$t_{diode}=\mu_2-\mu_1$$

The result of the estimation:

$$t_{diode} = 151.4 \pm 1.15 \ \mu m$$

Charge profile, irradiated diode

Measurement conditions:

- Temperature: -20 C
- $V_{\text{bias}} = 800, 600, 400, 200, 100 \text{ V}$
- Angle of incident: 0°

DUT:

• Proton irradiated at $\Phi_{eq} = 2 \times 10^{15} \text{ cm}^{-2}$

Observations:

- Charge profile is not uniform as a function of beam position.
- Holes have a higher charge collection than electrons

Trento	wor	kshop
16-18	Feb	2021

Charge profile, irradiated diode

Measurement conditions:

- Temperature: -20 C
- $V_{\text{bias}} = 800, 600, 400, 200, 100 \text{ V}$
- Angle of incident: 0°

DUT:

• Proton irradiated at $\Phi_{eq} = 4 \times 10^{15} \text{ cm}^{-2}$

Observations:

- Charge profile is not uniform as a function of beam position.
- Holes have a higher charge collection than electrons

CCE as a function of bias voltage

Measurement conditions:

- Temperature: -20 C
- $V_{bias} = 100 800 V$
- Angle of incident: 0°

DUT:

• Proton irradiated at $\Phi_{eq} = 2$ and 4×10^{15} cm⁻²

CCE is calculated as:

$$CCE(V_{bias}) = \frac{\sum_{x=-150 \ \mu m}^{+150 \ \mu m} Q_{x,irradaited} (V_{bias})}{\sum_{x=-150 \ \mu m}^{+150 \ \mu m} Q_{x,non-irradaited}}$$

Trento workshop 16-18 Feb 2021

Summary and outlook

Summary

- Edge-on measurement can be used to obtain charge collection as a function of depth in irradiated pad diodes.
- In this work, the method was implemented using the high energy electron beam.
- The advantages of using the electron beam are:
 - It can be used for pad diodes
 - The chare profiles can be normalized to an absolute value
- This work introduces a procedure for in-situ alignment of the beam direction with respect to the DUT surface.
- Charge profiles were obtained for one non-irradiated and two irradiated diodes
- By using the charge profiles, CCE of irradiated diodes were estimated

Outlook

- Compare the measured charge profiles with results of the simulations (from TCAD model)
- Trying to calibrate the results of pixel measurements using the edge-on diode results
- Repeat the method for higher irradiation fluence

Back up, charge profile and charge distribution

Trento workshop	
16-18 Feb 2021	

Mohammadtaghi Hajheidari (University of Hamburg)

16

Charge distributions, irradiated and non-irradiated diodes

Measurement conditions:

- Temperature: -20 C
- $V_{bias} = 800,100 V$
- Angle of incident: 0°

DUTs:

• Proton irradiated at $\Phi_{eq} = 0$, 2 and 4 × 10¹⁵ cm⁻²

Observations:

• The total charge distribution is shifted to the lower charge as the irradiation fluence increases.

Trento workshop	
16-18 Feb 2021	

Charge distributions, irradiated and non-irradiated diodes

Measurement conditions:

- Temperature: -20 C
- $V_{bias} = 800,100 V$
- Angle of incident: 0°

DUTs:

• Proton irradiated at $\Phi_{eq} = 0, 2$ and 4×10^{15} cm⁻²

Observations:

• The total charge distribution is shifted to the lower charge as the irradiation fluence increases.

Trento	wor	kshop
16-18	Feb	2021

Back up, Geometrical cuts

 $|y_{dut}| < 2.5 \text{ mm}$

Trento workshop 16-18 Feb 2021

Back up, Cuts on number of tracks per event

Trento workshop 16-18 Feb 2021

Hit map of the DUT

Measurement conditions:

- Room temperature
- $V_{\text{bias}} = 100 \text{ V}$

DUT:

• Non-irradiated

Observations:

- Pulse height distribution of the DUT for all events
- Reconstructed tracks with amplitude over offline threshold Conclusions:
- Most of tracks are out of the DUT plane
- $1 \sim 2$ % of tracks produce pulse in the diode

Trento	wor	kshop
16-18	Feb	2021

Back up, GEANT4 simulation result

Trento workshop 16-18 Feb 2021	Mohammadtaghi Hajheidari (University of Hamburg)	22	

Charge profile, non-irradiated diode

Measurement conditions:

- Temperature: -20 C
- $V_{\text{bias}} = 20, 100, 200, 300 \text{ V}$
- $\theta: 0^{\circ}$

DUT:

• Non-irradiated

Observations:

- At bias voltage of 20 V, the diode is only partially depleted from the front side. No charge collection in the rear side.
- For bias voltages above 100 V, the charge profile remains unchanged.

Trento workshop 16-18 Feb 2021	Mohammadtaghi Hajheidari (University of Hamburg)	23	