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Motivations
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✓ Low-Gain Avalanche Diode (LGAD)

✓ The intrinsic multiplication of the charge allows to improve the signal to noise ratio 

=> limitation of its drastic reduction with fluence.

✓ Most promising devices to cope with the high fluences expected in the future HEP 

experiments.

✓ Device-level simulation tools[1] for predicting the electrical behaviour and the charge 

collection properties up to the highest particle fluences.

✓ Implementation of a proper radiation damage model within the simulation environment.

[1] Synopsys© Sentaurus TCAD
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TCAD simulation of LGAD devices (1/2)
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✓ Physical models
✓ Generation/Recombination rate 

• Shockley-Read-Hall (SRH), Band-To-Band 
Tunneling (BTBT), Auger

• Avalanche Generation
=> impact ionization models, such as 
van Overstraeten-de Man, Okuto-Crowell, 
Massey[2], UniBo

✓ Carriers mobility variation doping and 
field dependent

✓ Physical parameters 
• e-/h+ recombination lifetime
• surface recombination velocity

[2] M. Mandurrino et al., Numerical Simulation of Charge Multiplication in Ultra-
Fast Silicon Detectors (UFSD) and Comparison with Experimental Data, IEEE, 2017

TCAD simulation of LGAD devices (2/2)
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✓ Radiation damage models
✓ “New University of Perugia model”

• Combined surface and bulk 
TCAD damage modelling scheme[3]

• Traps generation mechanism

✓ Acceptor removal mechanism

where 
• Gain Layer (GL) 
• c, removal rate, evaluated using the 

Torino parameterization[4]

[3] AIDA2020 report, TCAD radiation damage model - CERN Document Server
[4] see M. Ferrero talk

http://cds.cern.ch/record/2705944
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Methodology

DC / AC analysis Transient analysis Gain calculation

•DC biasing (static)
o n cathode: 0 V
o p anode: sweep
✓ start = 0 V
✓ step = - 25 V (from 100 V)
✓ stop = - 1000 V

•AC biasing (small-signal)
o For each DC bias step, 

superimposition of a 
1 Vpp, 1 kHz sinusoid

o Impedance matrix for each 
node of the discretized grid

•For each DC bias step, one 
Time-Variant (TV) simulation of 
impinging particle (MIP), 
following the “HeavyIon” model
o instant of penetration, 1ns
o impinging point, 10 µm
o through the whole device
o Linear Energy Transfer (LET)

where

• Leakage current calculation
o instant = 0,9 ns

• Leakage current offset subtracted 
from the simulated I(t) curve

•Calculation of Collected Charge
(CC) as the integral of the current

𝐿𝐸𝑇𝑓 = 
𝐸𝐿𝑂𝑆𝑆

𝐸

𝑝𝐶

µ𝑚

𝐸 = 3,68 𝑒𝑉

ELOSS = 0,027 𝑙𝑜𝑔 𝒚 + 0,126
𝑘𝑒𝑉

µ𝑚
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𝑮𝒂𝒊𝒏 = 
𝑪𝑪𝑳𝑮𝑨𝑫
𝑪𝑪𝑷𝑰𝑵

[5]

[5] S. Meroli et al., Energy loss measurement for charged particles in very thin silicon layers, JINST 6 P06013, 2011
[6] V. Sola et al., First FBK production of 50 µm ultra-fast silicon detectors, Nucl. Instrum. Methods Phys. Res. A, 2019

[6]
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Good agreement 
with experimental data

for Massey model

Analysis of different avalanche models
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[6]

✓ Simulation results, before irradiation

I-V

[6] V. Sola et al., First FBK production of 50 µm ultra-fast silicon detectors, Nucl. Instrum. Methods Phys. Res. A, 2019

Temperature 300 K
Electrical contact area 1mm2

Cut of the electric field for different Vbias
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Static (DC) and small-signal (AC) behavior (1/6)
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Massey model. Temperature 300 K. Electrical contact area 1mm2
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✓ Simulation results, before and after irradiation
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Static (DC) and small-signal (AC) behavior (2/6)
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Massey model. Temperature 300 K. Electrical contact area 1mm2

✓ Comparison with experimental data, before irradiation

I-V C-V

Good agreement!



July 2020

Static (DC) and small-signal (AC) behavior (3/6)
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Massey model. Temperature 300 K. Electrical contact area 1mm2

✓ Comparison with experimental data, fluence 2.0e14 neq/cm2

I-V C-V

Good agreement!

1e-4

1e-2
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Static (DC) and small-signal (AC) behavior (4/6)
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Massey model. Temperature 300 K. Electrical contact area 1mm2

✓ Comparison with experimental data, fluence 8.0e14 neq/cm2

I-V C-V

Good agreement!

1e-4

1e-2
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Static (DC) and small-signal (AC) behavior (5/6)
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Massey model. Temperature 300 K. Electrical contact area 1mm2

✓ Comparison with experimental data, fluence 1.5e15 neq/cm2

I-V C-V

Good agreement!

1e-4

1e-2
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Static (DC) and small-signal (AC) behavior (6/6)
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0

Massey model. Temperature 300 K. Electrical contact area 1mm2

✓ Comparison with experimental data, after irradiation

I-V, fluence 6.0e15 neq/cm2 I-V, fluence 1.0e16 neq/cm2

Good agreement!

1e-2

1e-4

1e-2

1e-4
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Transient response
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Massey model. Temperature 300 K. Electrical contact area 1mm2

ZOOM

✓ Comparison between LGAD and PIN response to the MIP for different Vbias

ZOOM

I-t, before irradiation I-t, fluence 1.5e15 neq/cm2

__
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Gain calculation
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Massey model. Temperature 300 K. Electrical contact area 1mm2

✓ Estimated error on data ±10 % 

G-V, before irradiation G-V, fluence 1.5e15 neq/cm2

Good agreement!

𝑮𝒂𝒊𝒏 = 
𝑪𝑪

𝑳𝑮𝑨𝑫

𝑪𝑪
𝑷𝑰𝑵
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Application of the developed model
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✓ Thin wafers recently produced by FBK

• thickness 25 and 35 µm [7]

✓ TCAD simulations very useful to

• compare the results with the experimental 

data, before and after irradiation

(irradiation campaign just completed at the 

Ljubljana JSI facility up to 1.0e17 neq/cm2)

• designing the future productions of 

thin LGADs for extreme fluences

Massey model, Temperature 300 K.
[7] V. Sola et al., First results from thin silicon sensors for extreme fluences, 
37th RD50 Workshop, Zagreb, Croatia, 2020

Doping profiles
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Conclusions
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✓ Strategy for the numerical simulation of LGAD devices.

✓ Results obtained under different operative conditions (device biasing, fluence).

✓ Good agreement between simulation predictions and experimental data for both non-irradiated and 

irradiated LGAD device.

✓ Combination of “new University of Perugia TCAD model” and the “acceptor removal” analytical model 

is used to simulate the radiation damage effects 

=> successful description of the decrease in gain with an increase in fluence.

✓ Application of the validated simulation framework for the prediction of different design 

options/detector geometries (e.g. thin sensors) behavior 

=> optimization for their use in the future HEP experiments.



Thank you for the attention!
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Low-Gain Avalanche Diodes (LGADs)

➢ Most promising devices to cope with the high spatial density of particles hits due to the 
increasing radiation fluence expected in the HL-LHC at CERN.

➢ LGAD structure: pin diode with the additional inclusion of a p+-type layer just below the n-
contact, which is commonly called multiplication layer.

➢ By applying a reverse-bias, this layer is responsible for a multiplication of carriers.

➢ By accurately chosing the peak and shape of the implanted p+ profile, it is possible to 
control the avalanche mechanism in order to obtain the required internal gain with a 
sufficiently high breakdown voltage.

➢ One of the best tools for predicting the behaviour of the avalanche process is device-level
simulation
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Gaval = 𝜶𝒏𝑛𝑣𝑛 + 𝜶𝒑𝑝𝑣𝑝 𝜶 =
𝐸

𝐸𝑡ℎ

𝑒−
𝐸
𝑖
𝐸
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Technology-CAD simulations
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➢ TCAD simulation tools solve fundamental, physical partial differential equations, such as
diffusion and transport equation for discretized geometries (finite element meshing).

➢ This deep physical approach gives TCAD simulation predictive accuracy.
➢ Synopsys© Sentaurus TCAD

𝜕𝑝

𝜕𝑡
+
1

𝑞
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−
1

𝑞
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+ − 𝑁𝐴
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Radiation damage effects (1/2)
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Two main types of radiation damage in detectors 
materials:

➢ SURFACE damage => Ionization
✓ Build-up of trapped charge within the oxide;
✓ Bulk oxide traps increase;
✓ Interface traps increase;
✓ Qox, NIT.

➢ BULK damage => Atomic displacement
✓ Silicon lattice defect generations;
✓ Point and cluster defects;
✓ Deep-level trap states increase;
✓ Change of effective doping concentration;
✓ NT.

✓ in silicon sensors
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Radiation damage effects (2/2)
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✓ in LGAD devices

➢ Acceptor removal mechanism [1]: the active (substitutionals) doping elements are partially
removed from their lattice sites due to the ionizing radiation and then de-activated after a 
kick-out reaction (Watkins mechanism [2]) that produces ion-acceptor complexes
(interstitials)

➢ Transformation of electrically active acceptors into defect complexes that no longer have
dopant properties

➢ This has been recently suggested as a possible explanation for the significant degradation
of gain (charge multiplication) observed on LGAD devices after irradiation.

(1) G. Kramberger, M. Baselga et al., J. Inst., vol. 10, no. 7, p. P07006, 2015
(2) G. D. Watkins, Defects and Their Structure in Non-metallic Solids, B. Henderson and A. E. Hughes, Eds. New York: 

Plenum, 1975
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TCAD radiation damage models used
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➢ “New University of Perugia model”
✓ Combined surface and bulk TCAD damage 

modelling scheme
✓ Traps generation mechanism

➢ Acceptor removal mechanism

where
• Gain Layer (GL) 
• c, removal rate, evaluated using the Turin 

parameterization
CCE, I-V, C-V, …

Bulk damageSurface damage (+ Qox)

𝑵𝑮𝑳(𝝓) = 𝑵𝑨(𝟎)𝒆−𝒄𝝓
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Transient responce: “HeavyIon” model

Gaussian
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Pre-Irradiation: Experimental Data (FBK UFSD2 Production)

W1 W8

Laser attenutation 82% (3 MIP 150 fC)

=> 6.4E16/cm3 (*)

(*) values updated to the latest
measurements – V. Sola, 20/10

19/T. Croci et al., TREDI 2021, Trento, Italy – February 16, 2021 tommaso.croci@pg.infn.it



July 2020

Post-Irradiation: Experimental Data (FBK UFSD2 Production)

W1

Laser attenutation 82% (3 MIP 150 fC)
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