Optimization of the 65 nm CMOS Linear front-end circuit for the CMS pixel readout at the HL-LHC

L. Gaionia,d, M. Manghisonia,d, L. Rattib,d, V. Rea,d, E. Riceputia,d, G. Traversia,d, G. Dellacasae, L. Demariae, S. Garbolinoe, E. Monteilc,e, F. Rotondoe

aUniversity of Bergamo
bUniversity of Pavia
cUniversity of Torino
dINFN Pavia, eINFN Torino
RD53 - An overview

• Collaboration among ATLAS & CMS communities aiming at the development of large scale pixel chips for LHC phase-2 upgrades

• 65 nm CMOS is the common technology platform

![RD53A Chip Image]

• The efforts of the RD53 collaboration led to the submission (2017) of the RD53A chip

• 20x11.5 mm² chip featuring a matrix of 400x192 pixels (50x50 µm² each)

• It contains design variations for testing purposes: 3 different front-ends (Synchronous, Linear and Differential)

• Comprehensive characterization of the FEs and FE reviews in view of the integration of final chips
The success of RD53A is the baseline for the design of the pixel readout chips of CMS and ATLAS at the HL-LHC.

RD53B is the common design framework for the design of the final production pixel chips for ATLAS and CMS.

After a very detailed review process, a choice was made by the experiments for the analog FEs:

- CMS → Linear front-end
- ATLAS → Differential front-end

Improvements of FEs according to reviewers’ comments and to experiments requirements.
RD53A Linear front-end

- Single stage front-end with Krummenacher feedback to comply with the expected large increase in the detector leakage current
- Low power asynchronous current comparator combined with a 40 MHz Time-over-Threshold (ToT) counter for digitization of the signal
- 4-bit local DAC for threshold tuning
Two main improvements implemented in RD53B Linear front-end:

- Optimization of the threshold tuning DAC
- Time-walk performance

- Prototype chip with RD53A/B versions of the Linear front-end has been submitted and tested
Prototype chip

- 16x16 pixel matrix
 - Two regions: RD53A - RD53B
- Analog bias
- Configuration block
 - SPI-based
- Custom LVDS TX/RX
- Bandgap test structures

Top metal layers not shown
- 2 detector emulating capacitors: 50 fF and 100 fF
 \[CD = 0, 50 \text{ fF}, 100 \text{ fF}, 150 \text{ fF} \]
- Leakage injection circuit (possibility to inject “positive” or “negative” currents)
Threshold tuning DACs

- Current-mode threshold tuning DACs
 - RD53A → 4 bits, cascoded current mirrors
 - RD53B → 5 bits, regular current mirrors
- **NMOS** switches
TDAC input-output characteristics

- **TDAC dynamic range** controlled by “LDAC” current (matrix periphery)
- **Saturation effect** taking place for RD53A at cold (for large I_{LDAC})
- The effect is **fixed** in the RD53B version
Boosting time-walk performance

- Partial re-design of the comparator led to improvement in front-end time-walk performance

RD53A

RD53B

- Fast turn-on time of M6 and M7 (RD53B) thanks to removal of M9 and M10 (RD53A)
- Current starving M8 (RD53B)
Significant improvement in time-walk at the cost of a marginal increase (~4%) in static current consumption.

- Results on a sample chip at $T=-20^\circ \, C$
- Threshold ~ 1000 e$^-$, 5uA per-pixel current consumption, 133 ns ToT @ $Q_{\text{in}}=6$ke$^-$, $C_D=50$fF
Radiation test

• Two chips have been **irradiated at cold** with X-rays at CERN
 • One chip with ToT $\sim 133 \text{ ns}$ @ Qin 6ke, $I_{LDAC}=13 \mu\text{A}$ (**slow ToT**)
 • One chip with Tot $\sim 70 \text{ ns}$ @ Qin 6ke, $I_{LDAC}=19 \mu\text{A}$ (**fast ToT**)

• **Test conditions:**
 • $T = -7^\circ \text{ C}$
 • per-pixel analog consumption $\sim 5 \mu\text{A}$
 • $V_{DAA}=V_{DDD}=1.2 \text{ V}$
 • $C_D = 50 \text{ fF}$
 • pre-rad $Q_{th} = 1100 \text{ e-}$
 • Bias set at room T (no changes after cooling and during irradiation)
Pre-rad results: Threshold and Noise (slow ToT)

- Threshold, Noise and Threshold tuning DAC (TDAC) codes distributions for RD53A/B
- Linear front-end before irradiation
1 Grad results: Threshold and Noise (slow ToT)

RD53A

- Threshold [e-] histogram
 - RD53A
 - $\mu = 778.19$
 - $\sigma = 150.89$

- Noise [e-] histogram
 - RD53A
 - $\mu = 93.00$
 - $\sigma = 11.82$

- TDAC codes distribution
 - RD53A

RD53B

- Threshold [e-] histogram
 - RD53B
 - $\mu = 911.20$
 - $\sigma = 83.38$

- Noise [e-] histogram
 - RD53B
 - $\mu = 84.36$
 - $\sigma = 0.59$

- TDAC codes distribution
 - RD53B

Spikes @ TDAC=0 and TDAC=15
Threshold dispersion vs TID (slow ToT)

- Significant increase of un-tuned threshold dispersion: ~55% (RD53A) and ~40% (RD53B)
- Tuned threshold dispersion $\approx 60 \text{ e r.m.s}$ at 1 Grad for RD53B
Time-walk and Noise vs TID (slow ToT)

- **Time-walk** for RD53B in general smaller than for RD53A
- **Moderate increase of time-walk with TID**: 22 ns pre-rad → 27 ns @ 1 Grad (RD53B)
- **Noise performance** not significantly affected by radiation
- **Equivalent noise charge** (ENC) slightly smaller for RD53B @ 1 Grad
Pre-rad results: Threshold and Noise (fast ToT)

- Larger threshold dispersion (wrt slow ToT) due to the larger TDAC LSB
- Increased ENC with respect to slow ToT (larger noise contribution from Krummneacher feedback network)
Pre-rad results: time walk (fast ToT)

- Smaller time-walk wrt slow ToT (faster preamp peaking time)
- Time walk smaller for the RD53B (<25ns in both versions)
• Significant increase of tuned threshold dispersion for RD53A (always < 60 e r.m.s. for RD53B). Recovery after 1d annealing at room T (measurement performed @ room T)
• Increase of time-walk with TID (~20% for RD53A, ~10% for RD53B)
• Slight increase of ENC with TID
Conclusions

- The **Linear front-end** has been chosen for the implementation of the pixel readout chips for the HL upgrade of CMS.

- With respect to RD53A, the front-end has been optimized in terms of **time-walk** performance (improved comparator version) and **threshold tuning** capabilities (TDAC saturation effect fixed).

- A **prototype chip** with RD53B Linear front-end was submitted and tested. A radiation campaign has been carried out at CERN on two chips.

- Prototype chips are fully functional at 1 Grad, with results showing little degradation up to 1 Grad for the RD53B version of the Linear front-end.
Backup
Top test pad
- Row of test pads for debugging purposes
- Will be removed in the production chip

Pixel matrix
- $192 \times 400 = 76,800$ pixels

Chip Bottom
- all global analog and digital circuitry needed to bias, configure, monitor the chip and for signal readout
Isolation strategy: two different DNWs for analog and digital

- **DNW-isolated analog 'islands'**:
 - Occasional PFETs using body NW for sub isolation
 - DNW shorted to V_{DDA}
- **DNW-isolated digital 'sea'**:
 - DNW biased at V_{DDD}
- **Global substrate** not used by supply or device bodies
Synchronous Analog Front-end

- **One stage CSA with Krummenacher feedback** for linear ToT charge encoding

- **Synchronous discriminator**, AC coupled to CSA, including offset compensated differential amplifier and latch

- Threshold trimming by means of autozeroing (no local trimming DAC)

- **Fast ToT counting** with latch turned into a local oscillator (100-900 MHz)
Differential Analog Front-end

- **Continuous reset integrator** first stage with DC-coupled pre-comparator stage
- **Two-stage open loop**, fully differential input comparator
- **Leakage current compensation** a la FEI4
- **Threshold adjusting** with global 8bit DAC and two per pixel 4bit DACs
LIN front-end: preamplifier response

- Gain stage based on a **folded cascode** configuration (~3 µA absorbed current) with a regulated cascode load
Noise and threshold dispersion

- **Equivalent noise charge** and threshold RMS @ 5 \(\mu \)A for bare chips and assemblies:
 - 50x50 planar sensor
 - 100x25 planar sensor
- Both parameters have an impact on **noise occupancy** (increasing pixel current consumption also has a beneficial impact thanks to reduced ENC)
- More results on **RD53A**: XXXXXXX

(Plots from N. Emriskova RD53A front-end review)
In-time threshold and overdrive

- **Regular threshold:** the signal charge at which the discriminator has 50% probability to fire
- 25ns BX bunches @ LHC → **in-time threshold:** the minimum signal that is detected in the right BX
- **Overdrive:** in time threshold - regular threshold

• Bare chips tuned to an in-time threshold of 1000 e- and assemblies to 1200 e-

(Plots from N. Emriskova, RD53A front-end review)

- Overdrive < 600e- (RD53A spec)
Calibration circuit (in-pixel)

- Local generation of the analog test pulse starting from 2 defined DC voltages CAL_HI and CAL_MI distributed to all pixels and a 3rd level (local GND)
- Two operation modes which allow to generate two consecutive signals of the same polarity or to inject different charges in neighboring pixels at the same time

- Injection DACs fully functional
- Assuming 8.5fF in-pixel injection cap → 10.08 e-/DAC
 - Close to simulation results (~11 e-/DAC)
- All biasing DACs (can be monitored using internal 12-bit ADC and are accessible on a dedicated pad) work fine
Pre-rad results: time walk

- **Time-walk** smaller than 25ns (HL-LHC bunch crossing period) for input charge close to threshold for RD53B