## Laboratory Measurements of Stiched Passive CMOS Strip Sensors

#### 16th (Virtual) "Trento" Workshop on Advanced Silicon Radiation Detectors

Marta Baselga, Leena Diehl, Ingrid-Maria Gregor, Marc Hauser, Tomasz Hemperek, Jan-Cedric Hönig, Sven Mädgefessel, Ulrich Parzefall, **Arturo Rodriguez**, Surabhi Sharma, Dennis Sperlich, Tianyang Wang, Liv Wiik-Fuchs



#### **CMOS Passive Strip Detectors**

First stitched strip sensors produced on 8" wafer by a commercial high volume foundry.

- L-Foundry 150 nm process (deep N-well/P-well)
- Up to 7 metal layers
- Wafer Resistivity: > 2 kΩ·cm
- Float-Zone silicon

Frontside process: Reticle stitching ⇒ larger sensors

Two different batches:

- low concentration backside implant and not metallization
- higher concentration backside implant and metallization



Two sensor lengths:

- 2 cm (short sensor)
- 4 cm (long sensor)

#### CMOS Passive Strip Detectors



| 0 | uad | The second division of |    | Topomorphic manager | THE REAL OF | <b>B)</b> (# |
|---|-----|------------------------|----|---------------------|-------------|--------------|
| ſ | 14  | 2A                     | 2A | 2A                  | 2A          |              |
| 1 | зА  | 1B                     | 1B | 1B                  | 1B          | зА           |
|   | зА  | 1B                     | 1B | 1B                  | 1B          | зА           |
|   | зА  | 1B                     | 1B | 1B                  | 1B          | зА           |
|   | зА  | 1B                     | 1B | 1B                  | 1B          | зА           |
|   | 14  | 2A                     | 2A | 2A                  | 2A          | 1A           |
|   |     |                        | 60 | mm                  |             | a) 1a        |

- Strip sensor implemented in 1/2A
- Stitched every ~1 cm along strip length
- Strip pitch: 75.5 µm

#### Stitching crucial for large area sensors

## **CMOS** Passive Strip Detectors



- 40 strips for each side
- Three types of implants per sensor
- Four total combinations



Wide Thin implant

#### **IV** Results

**First batch**  $\Rightarrow$  low concentration backside implant, no metallization

- Early breakdown for both designs
- Thin design shows strong increase in leakage current at low voltages
- Poor stability for Wide design

**Second batch**  $\Rightarrow$  higher concentration backside implant and metallization

- Breakdown above 220 V (improved)
- Wide design more stable along the range of voltages



#### **CV** Results



- Full depletion voltage around 25-40 V for both designs
- Different full depletion capacitance for thin and wide design  $\Rightarrow$  Different effective thickness
- More homogeneous capacitance
- Strong strip impact on capacitance for thin design at low voltages up to 10 V
- No negative effect from stitching visible

#### Interstrip capacitance



**First batch** 

- Two different strip implants visible on the "wide" design
- No effect from stitching visible

| Sensor       | Capacitance/Length<br>(fF/mm) |  |  |  |
|--------------|-------------------------------|--|--|--|
| "wide" left  | 62 ± 0.2                      |  |  |  |
| "wide" right | 144 ± 0.4                     |  |  |  |
| "thin"       | 37 ± 0.1                      |  |  |  |



#### Source Measurements

- Both strip designs bonded to one chip
  - Maximum bias voltage 100 V
- Twelve voltages measured:
  - $\circ$  5 40 V in 5 V steps
  - 50, 60, 80 and 100 V
- Only sensors from first batch tested





#### Source Measurements Results - Signal



- No evidence of any effect of stitching on the charge collection for the thin implant design
- No differences between long and short sensors

#### Source Measurements Results - Noise



- No evidence of any effect of stitching on the charge collection for the thin implant design
- Low signal-to-noise ratio

UNI FREIBURG

#### Source Measurements Results - Signal



- No evidence of any effect of stitching on the charge collection for the wide implant design
- Need to understand effect of the 2 different strip designs used in the "wide" sensor

#### Source Measurements Results - Noise



• No evidence of any effect of stitching on the charge collection for the wide implant design

• Low signal-to-noise ratio

UNI FREIBURG

#### Summary and outlook

- Successful design, production and measurements of first passive CMOS strip sensors
- "Wide" sensor design is better suited to withstand high voltages
- Breakdown voltage for good sensors is larger than 250 V
- No negative effect from the stitching could be observe in the measurements conducted
- First batch with backside processing issues showed electrical problems ⇒ solved in the second batch
- Charge collection measurements for the second batch are currently performed
- Irradiation studies are planned
- Sensor were measured at the DESY test beam facility and analysis is ongoing

# Thanks for your attention

### Source Measurements - Setup

- Radioactive source housed in a plexiglas cylinder
  - Collimates the electrons towards the silicon sensor
  - Provides shielding
- Two plastic scintillator-photomultiplier combinations
  - trigger for the readout of the sensor
  - Area of 4 x 4 mm2 and 45 x 45 mm2
  - 4 mm thickness





UNI FREIBURG