

PASSIVE CMOS SENSORS FOR RADIATION-TOLERANT HYBRID PIXEL-DETECTORS

16. TRENTO WORKSHOP

Malte Backhaus^a, Yannick Dieter^b, Jochen Dingfelder^b, Tomasz Hemperek^b, Fabian Hügging^b, Hans Krüger^b, Anna Macchiolo^c, Daniel Münstermann^d, <u>David-Leon Pohl</u>^b, Tianyang Wang^b, Norbert Wermes^b, Pascal Wolf^b, Sinuo Zhang^b

a. ETH Zürich

16.02.2021 11:15

- b. Physikalisches Institut der Universität Bonn
- c. Physik-Institut der Universität Zürich
- d. Physics Department, Lancaster University

David-Leon Pohl

PASSIVE CMOS SENSORS

Use commercial high-voltage/high-resistive CMOS process for planar sensor production, no active components:

- Large wafers (200 mm)
- High production throughput, low costs
- Poly-silicon resistors → connection to a bias grid
- MIM capacitors for AC-coupling → no leakage current into readout
- Many metal layers for redistribution
- Sub-pixel coding feasible? https://doi.org/10.1016/j.nima.2020.164524
- Field plates for inter-pixel isolation?

LFoundry 150 nm 1.8V CMOS process http://www.nanoitaly.it/nanoitaly/images/presentazioni/PS_2_1-Fama.pdf

MIM capacitor: 1 fF/ μ m², 2 fF/ μ m²

Polysilicon resistor: ~ 2.2 k Ω/\Box

4 – 6 metal option, thick metal

Back-side processing: thinning and implantation

Lithographic stitching

HISTORY OF PASSIVE CMOS SENSORS USING LFOUNDRY PROCESS

Large pixel prototype

- 50 x 250 um² pixels, ATLAS IBL planar geometry
- Performance comparable to ATLAS IBL sensors after irradiation > 1 · 10¹⁵n_{eq}/cm²
- Investigation of AC-coupling schema, pixel biasing schemes (bias dot vs. resistor biasing)

Test structures

- Many structures produced
- Varying designs: guard rings, pixel isolation, implantation geometries
- Investigations of break down with TID
 - → Identified enhanced guard ring structure
- Investigation of sensor capacitances

Byproducts of DMAPS efforts

Small pixel prototype

50 x 50 um² pixels, ATLAS ITk pixel geometry

Full size (quad) sensors

- 50 x 50 um² pixels, 25 x 100 um² pixels
- Full-size ATLAS ITk pixel modules
- Participation in ATLAS ITk pixel sensor market survey
- RD53A and RD53B compatible

Dedicated submission

SMALL PIXEL PROTOTYPE

- High resistive 4-5 $k\Omega~cm$ p-type CZ wafer
- 50 μm x 50 μm pixels in 64 × 64 matrix
- 100 um thickness, backside implant, etching + metallization @ IBS France
- Bump bonded to RD53A @ IZM Berlin
- DC coupled pixels:
 - No biasing structure
 - Variation of implantation width: 15 μm - 30 μm
 - Variation of n-well depth: n-well (NW) and deep n-well (DNW)
- More info in publication: https://doi.org/10.1016/j.nima.2020.164130
- Irradiated at the Bonn HISKP Irradiation Facility

50 µm

16. Trento Workshop

EFFICIENCY MEASUREMENT

- DUT operation conditions:
 - Threshold: ~ 1000 e
 - Noise occupancy: < 10⁻⁶
 - Bias voltage < 400 V, otherwise too many noisy pixels
- Before irradiation:
 > 99.5 % at 5 V only
- 5 x 10¹⁵ n_{eq}/cm²:
 > 99 % efficiency (@ 100 V)
- 1 x 10¹⁶ n_{eq}/cm²:
 > 99 % efficiency (@ 400 V)
- Mean efficiency for fifferent fill-factors @ 400 V:

Hit-detection efficiency of 100 um passive CMOS sensor

IN-PIXEL EFFICIENCY @ 1 x 10¹⁶ n_{ea}/cm²

NW15

50 µm

- High bias voltage + large n-implants Homogeneous efficiency within pixels
- Flavors with small n-implants: Efficiency loss at pixel corners (especially for low bias voltage)
 - ightarrow Due to low electric field and charge sharing

NW30 (std. design)

50 µm

30 µm

CHARGE: UNIRRADIATED VS IRRADIATED

- Single-hit cluster-charge measurements with 5 GeV electrons
- Measured after charge calibration
- Using <u>hit-bus TDC method</u>

SENSOR INPUT CAPACITANCE

- Capacitance measurement chip in TSMC 65 nm PixCap65:
 - ~ 0.3 fF precision
 - Ability to measure different contributions to input capacitance (inter-pixel, bump bonds, backplane)
- Publication: <u>https://doi.org/10.1088/1748-0221/16/01/P01029</u>

INVESTIGATION OF THE INTER-PIXEL RESISTANCE

- P-stop isolation maintains a high inter-pixel resistance after irradiation
 - Advantage: low signal spreading, good spatial resolution
 - But: a dominating source of the detector capacitance
- Idea:
 - Substitute the p-stop by a field plate at inter-pixel regions
 - Electrostatic potential on field plate modifies the conductivity
 - Increase inter-pixel resistance
 - Remove the contribution of p-stop to the pixel capacitance
- Resistance measurement: apply voltage between neighboring pixel n-wells and measure current (voltage << bias voltage)

INVESTIGATION OF THE INTER-PIXEL RESISTANCE

- Test structure in LFoundry 150 nm CMOS, 50 x 50 μm² pixel matrix, irradiated with 12 MeV protons @ Bonn HISKP irradiation facility
- Before irradiation: High resistance for all isolation structures (~ $10^{13} 10^{14}\Omega$)
- After irradiation: P-stop: ~ $10^{11}\Omega$, Field-plate: ~ $10^8 10^{11}\Omega$ depending on bias

Fluence [n _{eq} cm ⁻²]	Resistance Field-plate: floating	Resistance Field-plate: 0 V	Resistance Field-plate: -100 V	Resistance with p-stop	т
0	$\sim 5\times 10^{13}\Omega$	$\sim 2 \times 10^{14} \Omega$	$\sim 2 \times 10^{14} \Omega$	$\sim 1.5 \times 10^{14} \Omega$	293 K
5×10^{14}	4960 × 10 ⁶ Ω	$950 imes 10^6 \Omega$	$130 \times 10^{9} \Omega$	$155 \times 10^{9} \Omega$	258 K
1×10^{15}	$2580 \times 10^6 \Omega$	$520 imes 10^6 \Omega$	$160 imes 10^9 \Omega$	$110 \times 10^{9} \Omega$	258 K
5×10^{15}	$510 \times 10^6 \Omega$	$130 imes 10^6 \Omega$	$32 \times 10^{9} \Omega$	$27 imes 10^{9} \Omega$	258 K
1×10^{16}	$260 \times 10^6 \Omega$	$130 \times 10^6 \Omega$	$15 \times 10^{9} \Omega$	$16 \times 10^{9} \Omega$	258 K

Measurements at 100 V bias

- Requirement > 10 MΩ seems feasable?
- Next: measure capacitance for field-plates, X-Ray irradiations, and reproduce results with TCAD

FULL-SIZE PASSIVE CMOS SENSOR SUBMISSION

- Design (mainly by Tianyang Wang)
 - Different sizes for modules:
 - RD53A single and dual chip modules
 - RD53B quad modules
 - Different pixel flavors:
 - $50 \times 50 \ \mu m^2$ and $25 \times 100 \ \mu m^2$
 - AC or DC coupled
 - Not only pixel sensors, also strip sensors: See previous talk
- Float-zone wafer material
- Thinning to 150 µm + handling wafer and backside implantation @ LFoundry
- Backside Al-Si metal + UBM + Flip-chip @ IZM Berlin

STITCHING AND BIASING

- Sensor size > reticle size → reticle stitching needed
- Different reticles:

Repeat them for different designs:

- Resistor biasing for all pixel flavors, likely benefitial to prevent cross talk
- Bias resistor: > 2 MΩ

IV CURVES AND BACKSIDE PROCESSING

- Sensor requirements before irradiation ATLAS ITk:
 - V_{dep} ~ 30V (< 100V, for 150 um)
 - I_{leak} < 0.75 μA/cm² @ 80V (V_{dep} + 50 V)
 - V_{break} ~ 180-200 V (> V_{dep} + 70 V)
 - → Sensors fulfill specifications

- Full-size submission: changed backside processing vendor to simplify potential production for ATLAS ITk
- All first-batch devices showed high current at full depletion (V_{dep} ~ 30 V), due to inadequate interface from bulk to backside metal
- Increase of implant dose solved issue

EFFICIENCY MEASUREMENT

- Detection efficiency measured @ DESY test beam in December 2020:
 - Perpenticular beam
 - 5 GeV electrons
 - 5 7 kHz trigger rate
- DUT conditions:
 - Linear FE of RD53A
 - Threshold: 1200 e
 - Noise occupancy: < 10⁻⁶
 - 50 x 50 μm² pixel design
 - High BS implant dose
- Efficiency of both, DC and AC design above requirement (97%)
 - At 80 V (V_{dep} + 50 V): 99.85 % efficiency
 - For V > V_{dep}: No difference between AC and DC

NOISE COMPARISON

- Pure FE (LIN) noise: 60-65 e
- Other sensors:
 - Dual-chip module measurement (> 2 samples per vendor)
 - Larger error due to unkown charge calibration: assume 10 % uncertainty
- Only 50x50 μm² sensors measured, yet
- Noise of LFoundry sensors comparable to other sensors
- Likely slightly larger sensor capacitance than other sensor designs
- Capacitance to be measured

SUMMARY

- 100 μm, 50 x 50 μm² prototype:
 - Detection efficiency > 99% @ $1 \times 10^{16} n_{eq}/cm^2$ with RD53A
 - Large capacitance reduction possible for small fill-factor designs
- Inter-pixel isolation with field plates:
 - Sufficient inter-pixel resistance reached (> 10 MΩ)
 - Even at 1 x 10¹⁶ n_{eq}/cm²
 - Capacitance benefits to be measured...
- 150 μm, full-size sensor of dedicated submission:
 - Sensors fullfill requirements (ATLAS ITk)
 - Irradiated devices cool down, to be measured after irradiation...
 - Next: build a quad module with RD53B

