

Pixel Sensor Development for the ATLAS ITk Upgrade

Tobias Fitschen on behalf of the ATLAS-ITk Pixel collaboration

Laboratoire de Physique des 2 Infinis Irène Joliot (IJCLab) Orsay, France and University of Birmingham Birmingham, UK

Trento, 2021 February 16

LHC Upgrade

- LHC will be upgraded to High-Luminosity (HL-LHC)
- pprox 60 ightarrow 200 interactions per bunch crossing
- Current inner detector must be upgraded to satisfy new requirements

The ITk Detector

Inner Detector (ID) will be replaced by full-Si Tracker (ITk):

- Coverage up to 4 η with at least 9 points per track
- Outer Part: Si-strip detectors:
 - 4 barrels, 6 endcaps
- Inner Part: 5 layers of Si-pixel detectors (covered in this talk):
 - Inner layer (L0): 1188 3D sensors (150 $\mu\text{m}),$ 34 mm from beam
 - Outer layer (L1): 1200 planar sensors (100 μ m)
 - Outer barrel and endcap (L2-4): 6816 planar sensors (150 μ m)

Current pixel system

~1.9 m² of active area 2000 modules 92 Mega-pixels

New ITk pixel system

~13 m² of active area 9400 modules 1.4 Giga-pixels Support

ATLAS / ITk

Requirements

Necessary properties:

- Radiation hardness
 - Up to $\approx 2\times 10^{16}~\frac{neq}{cm^2}$ (3D at L0)
 - Up to order of 10⁷ Gy total ionizing doze (TID)
- Increased pileup
 - Up to 10 times more track density
 - Higher granularity
 - Higher burden on readout

Desired for physics:

- High spacial resolution
- High single-pixel hit efficiency

Planar sensor radiation requirements:

Layer	max. fluence n _{eq} /cm² (SF=1.5)	max. TID in MGy (SF=1.5)
L1 (@2000fb ⁻¹)	4.1e15	3,4
L2	4.7e15	5,2
L3	3.2e15	2,5
L4	2.4e15	1,4

Front End Chip

RD53A prototype:

- Common R&D by ATLAS & CMS
- 50 \times 50 μ m grid
- Three analog FE

ITkPixV1/2 full size chip:

- Based on differential FE
- 1 MHz trigger rate
- Radiation hard up to >5 MGy $(10^{16}~\frac{neq}{cm^2})$
- 65 nm technology
- First wafers of V1.1 available
- Final submission of V2 forseen before end of 2021

3D sensors

Innermost layer L0 equipped with 3D sensors:

- Final design review (FDR) held 26 Nov 2019
- Proximity to beam requires superior radiation hardnes $(10^{16} \frac{\text{neq}}{\text{cm}^2})$
- L0 replaceable after high irradiation damage
- Triplet module geometry
- Single-side technology (n&p electrodes etched from same side)
- 50 \times 50 (rings) and 25x100 μ m² (barrel) pixel size
- > 97% hit efficiency at 14° incl. (> 96% perpendicular)

3D sensors

- Low 80 140 V bias voltage
- Low power dissipation $< 10 \frac{\text{mW}}{\text{cm}^2}$ (@ $-25 \text{ °C}, 10^{16} \frac{\text{neq}}{\text{cm}^2}$)
- More results for 3D sensors in 3D session on Thursday:
 - By Alessandro Lapertosa on FBK sensors
 - By <u>Stefano Terzo</u> on CNM sensors

Results for CNM sensors on RD53A:

leakage current

Planar Sensors

Layers L0-4 equipped with planar sensors:

- Final design review (FDR) held 18 Sep 2020
- Outer layer (L1): 100 μm thickness
- Outer barrel and endcap (L2-4): 150 μm thickness
- Pixel size of 50x50 μm²
- L2-4 expected to survive full amount of irradiation corresponding to 4000 fb⁻¹
- L1 replaced once $(
 ightarrow 2000~{
 m fb}^{-1})$

Planar Sensors

Bias structure allows check of leakage current before flip-chip:

- Several options from different vendors:
 - Poly-silicon bias resistor
 - Higher noise
 - Bias rail with punch-through (PT)
 - Reduced hit efficiency around PT dots
 - No bias structure
 - Needs temporary metal layer until wafer dicing
 - Uniform efficiency
 - No uniform ground in case of disconnected pixel

Planar Sensors

Single (SC), Double (DC), and Quad (QC) layouts

- Prototypes from various different foundries tested
- Final modules will all be quads

Thickness and Planarity

Some institutes have dedicated setup to perform laser scan

Other institutes: Microscope-focus method:

- Focus on several points on sensor and chuck by adjusting microscope height with fixed focal length
- Local thickness approximated as difference of height *h* between point on chuck and sensor

$$\underset{\substack{i=2 \text{ sensor } i=5 \\ i=3 \text{ s}}{\bullet}, i \in \frac{1}{\bullet}, i$$

Visual Inspection

Visual inspection requirements:

- No stains, residues, scratches
- No chips > 40 μ m at edges
- No shorts between pixels Results:
- Most sensors show no visual defects, some exceptions

Electrical Characterization

Requirements for Qualification:

- Depletion voltage $V_{
 m dep} <$ 100 V (for 150 μm sensors) measured at 1 kHz
- Leakage current $\mathit{I}_{\mathsf{leak}} < 0.75~\mu\mathsf{A}/\mathsf{cm}^2$ at $\mathit{V}_{\mathsf{dep}} + 50~\mathsf{V}$
- Variation of leakage current $\Delta I_{\rm leak} < 25\%$ measured over 48 h
- Breakdown voltage $V_{\text{break}} > V_{\text{dep}} + 70 \text{ V}$ (V_{break} defined as V at which I_{leak} increases by > 20% over $\Delta V = 5 \text{ V}$ step)

CV and IV

CV measurements:

- Plot $1/C^2$ vs V to calculate V_{dep}
- Perform 2 fits:
 - Constant in fully depleted region
 - Linear rise before
- V_{dep} given by the position of the intersection
- Requirement: $V_{dep} < 100 V$ (for 150 μ m)

IV measurements:

- Plot I vs V
- Increase by $\Delta I > 20\%$ over $\Delta V = 5V$ step defined as breakdown
- Requirement: $V_{\text{break}} > V_{\text{dep}} + 70 \text{ V}$
- Requirement: $\mathit{I}_{\rm leak}/{\rm area} < 0.75~\mu A/{\rm cm}^2$ at $V_{\rm dep} + 50~{\rm V}$

CV and IV

CV measurements:

- Plot $1/C^2$ vs V to calculate V_{dep}
- Perform 2 fits:
 - Constant in fully depleted region
 - Linear rise before
- V_{dep} given by the position of the intersection
- Requirement: $V_{dep} < 100 V$ (for 150 μ m)

IV measurements:

- Plot I vs V
- Increase by $\Delta I > 20\%$ over $\Delta V = 5V$ step defined as breakdown
- Requirement: $V_{\text{break}} > V_{\text{dep}} + 70 \text{ V}$
- Requirement: $\mathit{I}_{\rm leak}/{\rm area} < 0.75~\mu A/{\rm cm}^2$ at $V_{\rm dep} + 50~{\rm V}$

16 / 20

Leakage Current Stability

- Measure for 48 h
- Ensure stable humidity, temperature, and darkness
- Requirement: Variation $\Delta I_{\text{leak}} < 25\%$

Hit efficiency measurements at DESY test beam facility:

- Modules: Planar sensor bump-bonded to RD53 front end chip
- Unirradiated and irradiated to two fluences
- 3 measurement campaigns at DESY: Sep and Nov 2019, Jun 2020
- At least one measurement per vendor per fluence per thickness

Requirements on sensor efficiency:

	Measurement voltage	Fluence	Hit Efficiency
100 and 150 um thickness	Vdepl+50V	Before irradiation	>98.5%
100 um thickness	300V 400V	$F=2x10^{15} n_{eq}/cm^2$. F=5x10 ¹⁵ n _{eq} /cm ² ,	>97%
150 um thickness	400V 600V	F=2x10 ¹⁵ n _{eq} /cm ² , F=5x10 ¹⁵ n _{eq} /cm ² ,	>97%

QA/QC

Quality Control (QC):

• Identify defects in finished sensors

Quality Assurance (QA):

• Prevent defects in production

-	Production stage	Associated QA/QC
Pre-production	Sensor wafer production (sensor vendor)	- IV/CV - Visual inspection - Metrology
	After UBM - Thinning - Backside metallisation and dicing (Hybridisation vendor)	- IV - Metrology - Visual inspection
	On test structures and bare sensors at ITk institutes	- IV/CV/IT - Inter pixel R/C - Irradiations - CCE
	On flip-chipped modules at ITk institutes	- IV/IT - Irradiations - Test-beams
Production	Sensor wafer production (sensor vendor)	- IV/CV - Visual inspection - Metrology
	After UBM, Thinning, Backside metallisation and dicing (Hybridisation vendor)	- IV (?) - Metrology - Visual inspection
	On test structures at ITk institutes	- IV/CV/IT - Inter pixel R/C

Schedule

Planar sensors:

- Pre-prod.: Mar Sep 2021
- Production: mid 2022 mid 2024

3D sensors:

- Pre-prod.: Aug 2020 Apr 2021
- Production: mid 2022 mid 2024

ATLAS Inner Detector will be replaced with full-Si ITk:

- Full-size ITkPixV1 front end chip based on RD53A prototype
- 1188 3D sensors at high-radiation inner layer
 - Pre-production started
 - 50 imes 50 μ m and 25 imes 100 μ m layout
- 8016 planar sensors in outer layers
 - 50 imes 50 μ m layout
 - Extensive Market Survey to qualify vendors
- Production for both sensor types forseen for mid 2022 mid 2024
- QA/QC ongoing during pre-production and production
- Both type of sensors demonstrated necessary requirement for ITk