

eSPS Design Study

Student Design Project 2020-2021

Majid Ali, Emily Archer, Pablo Arrutia, Joseph Bateman, Robert Murphy, Cameron Robertson and Rebecca Taylor

11/03/2021

Contents

eSPS Introduction

- Proposed electron accelerator using SPS infrastructure
- **3.5 GeV linac** with CLIC X-band technology
- Synchrotron extraction energy up to 16 GeV (18 GeV)
- Electron target experimental area
 - Low-rate & beam dump experiments

A primary electron beam facility at CERN (2018) https://cds.cern.ch/record/2624786

Physics Motivations: Dark Sector Physics

- Studying Light Dark Matter (LDM) candidates
 - MeV GeV range
 - χ particle & corresponding A' boson
- Require low-rate, high current e⁻ beam
 - DM has low cross-section, so want high statistics, with low pile-up for individual measurements
- Precise electron beam gives good probe of missing momenta experiments
 - Axion-like particles, dark photons, etc
 - Electron-nucleus precision measurements for neutrino oscillation experiments

A primary electron beam facility at CERN - eSPS CDR (2020) http://cds.cern.ch/record/2730589

Accelerator Motivations

- Demonstration of CLIC X-band technology with test site
 - 12 GHz linac from technology developed for CLIC
 - Next step in high-gradient acceleration
- Circular electron accelerator **infrastructure** & training
 - Preparation for next-generation Higgs-factories
- Wakefield accelerator test facilities
 - Can adapt for plasma wakefield electron bunches
- Producing RF cavity R&D to match FCC-ee requirements
 - 800 MHz superconducting cavities

New module installed in CLIC test facility (2015) Brice, Maximilien cds.cern.ch/record/1982610

Lattice Team

Rob Murphy and Rebecca Taylor

Injection line sections

LINAC matching

Match Twiss parameters into FODO line

FODO

Will transport the beam to TT61

TT60

Currently proton injection into LHC. Will transport electrons into eSPS

SPS

Synchrotron, completed in 1970s. Has accelerated e^- , e^+ , \bar{p} and p. Readapting for electrons

11/03/2021

Injector Line

- LINAC in TT5/TT4 provides bunch of 5->40 ns.
 - High repetition rate (200 ns at 100 Hz).
- TT60 Previously used to transfer protons to West Area.
- e^- injected in opposite direction to p.
 - 3.5 GeV kicker at 100Hz repetition rate.

View of beam traffic in TT60 tunnel, looking towards the SPS (1981) http://cds.cern.ch/record/754068

Method

- Start with Twiss parameters (alpha, beta, dispersion) and working backwards from SPS (fixed optics).
- Use Twiss parameters, track backwards through TT61. Provides target Twiss parameters at start of TT61.
- Match parameters from LINAC into TT61 using matching routine in MADX e.g. Simplex.
- Use full Twiss parameters to calculate beam envelope.
- Compare beam envelope to physical aperture.

NAME	COMPONENT	BETX (m)	BETY (m)	ALFX	ALFY	DX
START_FODO	MARKER	295.43	19.15	-3.37	1.17	5.41
DRIFT_6	DRIFT	306.91	15.56	-3.45	0.96	5.62
QTRF1	QUAD	306.81	14.91	3.69	0.56	5.65

Challenges of eSPS lattice design

Pros	Cons
Existing Infrastructure	Limited Space
Development time	Constrained apertures (magnets)
Reusable components	Operational requirements
NEW PHYSICS!	Activation products/materials

Linac Matching:

- Initial optics calculated from a FODO cell of 5.3 m length and 90° phase advance
 - $\beta x = 9m, \beta y = 1.5m$
- **98.5 m long** to match small linac beam to larger beam for the FODO transport
- 6 QTN magnets & 4 BH2 magnets
- \bullet 20° slope causes large dispersion in y
 - •36.4% tunnel downwards

FODO line:

- Transporting beam from linac towards SPS
- **510 m long** want quadrupoles with large focusing length
- 10 QTR magnets & 3 BH2 magnets

TT61 Line:

- Same as existing line
 - Reversed it and matched to SPS injection
- 307 m long

Beam size & apertures

11/03/2021

Beam size & apertures

- Large y dispersion from the 20° slope
 - Large beam envelope 2.1σ away from the aperture
 - Beam transmission: **97.0%**
- To reduce y-plane dispersion:
 - Adjust phase advance
 - Dispersion cancelling techniques
- It is possible to increase beam current to replace losses
- Try matching but reduce dy and dyp

Optics solution with reduced dispersion

Optics solution with reduced dispersion

- Matching with dy < 1, dpy < 0.1
 - Less periodic solution
 - Reduces beam size
- Sigma from aperture is 7σ in x and 6σ in y
- Further investigations can find more appropriate solutions

11/03/2021

Magnets Team

Emily Archer and Joe Bateman

Injection & Extraction

FEMM Simulations B-Field Analysis

A primary electron beam facility at CERN - eSPS CDR (2020) http://cds.cern.ch/record/2730589

- 3.5 GeV Compact X-band Linac to existing TT61 transfer line.
- The magnets in TT61 line should be air-cooled to avoid installation of a new water supply.

Using existing magnets!

- Existing TT10 transfer line to new experimental hall
- Electrons extracted from the SPS cross protons being injected from the PS

11/03/2021

Dipole Bending Angle

INJECTION
$$\alpha = \frac{L * B \,\mathrm{T}\,\mathrm{m}}{11.6746 \,\mathrm{T}\,\mathrm{m}},$$
 EXTRACTION $\alpha = \frac{L * B \,\mathrm{T}\,\mathrm{m}}{53.3696 \,\mathrm{T}\,\mathrm{m}},$

Quadrupole Focusing Strength

https://www.femm.info/wiki/pyFE MM

11/03/2021

FEMM Models - Injection

QTN Quadrupole

BH2 Dipole

QTR Quadrupole

11/03/2021

11/03/2021

FEMM Models – Extraction

BH2 Dipole

MCW Dipole

11/03/2021

FEMM Models – Extraction

Q200 Quadrupole

QTS Quadrupole

QTN Quadrupole

11/03/2021

11/03/2021

Field Analysis - MCW

96 turns, 1000 A (peak), 414.46 A Aperture width and height: 195 mm, 70 mm Total width and height: 850 mm, 1130 mm

11/03/2021

eSPS Design Study

Max field

strength:

1.37T

peak current)

Reasonable agreement using two slightly different methods as a sanity check

11/03/2021

Future Magnet Studies

RF Cavity Team

Majid Ali, Pablo Arrutia and Cameron Robertson

Infrastructure

Voltage Requirements

Cavity Design

Infrastructure

Cavity: 800MHz 5 cell Superconducting Cavity

- Multiple of 200MHz RF frequency -> 5 ns bunch spacing
- High acceleration gradient

802 MHz ERL Cavity Design and Development (2018) http://cds.cern.ch/records/26538533/

Location: LSS6 Crab Cavity Testing Zone

- Minimise additional impedance; **HL-LHC**
- Allow rapid changeover between electron/proton modes (10 min)

11/03/2021

Voltage Requirements

- Important to
 - Determine if voltage and fields achievable with the chosen technology
 - Specify the consequences of different voltage choices
- Two beam energies considered: 16 GeV and 18 GeV (for possible upgrade)

$$V_{beam} = V_{acc} + V_{rad} + V_{bucket}$$

- V_{beam} : effective peak voltage visible by the beam
- V_{acc} : voltage for acceleration
- V_{rad}: voltage for synchrotron radiation
- V_{bucket}: voltage for bucket area

eSPS Design Study

V_{rad}

(~ \mathcal{y}^4)

7.7 MV

12.4 MV

V_{bucket}

• V_{bucket} chosen to ensure a long enough beam lifetime

V_{bucket}

- Lifetimes characterised by their time constants -We aim for time constants >100 s (~10x cycle)

Quantum dominates, but Touschek also relevant!

$$V_{beam}$$
 and E_0

The on-axis accelerating electric field E_0 is important for R&D considerations:

Cavity Design

- Minimize the peak surface electric field (E_p/E_0) Field emission limit $(E_0 \text{ limit})$
- Ratio of the magnetic peak with respect to the accelerating gradient (H_p/E_o) . Quench limit (SC thermal breakdown)
- (Large geometrical factor (G) and R/Q, Lower power dissipation)
- Efficient use of RF energy (end-cell design) Have good field flatness

2D Model in Superfish

Equator radius used to tune cavity frequency

Before

11/03/2021

After

2D Model

Varied dome ellipse + wall slope to optimize end-cell

A five-cell 800 MHz cavity parameters are listed for comparison

	JLab	ESS	OUR DESIGN 16 GeV (18 GeV)
Number of cells	5	5	5
Freq (MHz)	800	704.42	800
L _{act} Length (cm)	93.5	85.5	93.68
E _o (MV/m)	11.8	19.9	12.2 <mark>(18.3)</mark>
E _p (MV/m)	30.68	43.75	29.38 (44.07)
B _p (mT)	57.82	85.57	43.63 <mark>(65.45)</mark>
R/Q (ohm)	523.9	518	427.58

- CST Studio Suite Electromagnetic field simulation software
- Geometry imported from Superfish input files
- Complete 3D model, eigenmode solver, mode analysis, EM visualisation

- Multiple modes
 - Mode 1 0 mode, 757.6815MHz
 - Mode 5 π mode, 799.769MHz
- Asymmetric effects
 - Good field flatness
- 'Hot spots'

E-Field

H-Field

Parameter	Superfish Design	CST Design	Difference
U at E ₀ = 10MV/m (J)	19.90	19.86	<1%
E _{max} /E ₀	2.4080	2.5419	5%
B _{max} /E ₀ (mT/MV)	3.796	3.755	5%
r/Q(Ω)	427.58	428.37	<1%

- Geometrical properties near-identical; necessary quality check
 - Imported directly from Superfish
- Peak field strength discrepancies
 - Limitations from mesh size
 - CST optimisation required

eSPS can produce a **unique Light Dark Matter physics programme** with relatively small costs and time-scales.

eSPS can produce a **unique Light Dark Matter physics programme** with relatively small costs and time-scales. Electron beam successfully transported from linac to SPS, but adjustments required to reduce yplane dispersion.

eSPS can produce a **unique Light Dark Matter physics programme** with relatively small costs and time-scales. Electron beam successfully transported from linac to SPS, but adjustments required to reduce yplane dispersion.

Existing **CERN magnets modelled and analysed** (good field region + multipoles). Field quality satisfies transfer line requirements.

eSPS can produce a **unique Light Dark Matter physics programme** with relatively small costs and time-scales. Electron beam successfully transported from linac to SPS, but adjustments required to reduce yplane dispersion.

Existing **CERN magnets modelled and analysed** (good field region + multipoles). Field quality satisfies transfer line requirements. 2 SuperConducting 800MHz RF cavities in LSS6 bypass fulfil requirements for 16 and 18 GeV operation.

Extra slides

FEMM + pyFEMM

(Finite Element Method Magnetics + Python wrapper library)

- Finite element method used to solve
 - magnetostatic
 - time harmonic magnetic
 - electrostatic and
 - steady-state heat flow problems
 - + Free open-source software (unlike Opera-2D/3D)
 - + User-friendly GUI for designing the magnets themselves
 - + Controllable via pyFEMM Python library, making integrated analysis possible
 - Only for 2D problems, but with the option for planar or axisymmetric domains

Using CERN technical drawings, we modelled existing CERN magnets in FEMM

11/03/2021

Field Analysis

- Linear transect of the central field plotted
- Savinsky-Golay filter
- Numerical gradient calculated (three different methods)
- Linear fitting to determine 'ideal field'
- Good field region determined:

Good Field Region
$$\rightarrow \frac{\Delta B}{B_{id}} = \frac{B(x,y) - B_{id}(x,y)}{B_{id}(x,y)} < 1 \times 10^{-3}$$

Dipole Bending Angles: Injection

Dipole Bending Magnets						
Magnet Type	Iron Length L (m)	Nominal Field	Bending Angle	Bending Angle		
		Strength B (T)	(mrad)	(deg)		
206	0.16	0.15	2.056	0.117		
BH2 Type 2	0.51	1.52	66.401	3.804		
MBB/E	6.20	2.02	1072	61.421		
MCW	3.00	1.50	385.45	22.085		
MTR	3.60	2.04	629.057	36.042		

Note: all values assume max. operating current

Quadrupole Focusing Strength: Injection

Quadrupole Focusing Magnets						
Magnet	Iron Length L (m)	Nominal Field Strength	Normal	Focal Length f (m)		
Type		$\partial B_y / \partial x \; (\mathrm{Tm}^{-1})$	Quadrupole Coeffi-			
			cient $K1 (m^{-2})$			
CLIC	0.08	-	-	-		
Q100	1.00	11.0	0.942	1.061		
QFS	0.80	18.9	1.619	0.772		
QTL	3.00	24.0	2.0557	0.162		
QTN	0.30	5.33	0.4565	7.302		
QTR	0.308	1.4	0.1199	27.079		
QTS	1.5	24.0	2.0557	0.324		

Note: all values assume max. operating current

Dipole Bending Magnets							
Magnet Type	Iron Length L (m)	Nominal Field	Bending Angle	Bending Angle			
		Strength B (T)	(mrad)	(deg)			
206	0.16	0.15	0.450	0.0258			
BH2 Type 2	0.51	1.52	14.525	0.832			
MBB/E	6.20	2.02	234.67	13.446			
MCW	3.00	1.50	84.318	4.831			
MTR	3.60	2.04	137.61	7.884			

Quadrupole Focusing Magnets						
Magnet	Iron Length L (m)	Nominal Field Strength	Normal	Focal Length f (m)		
Type		$\partial B_y / \partial x \ (\mathrm{Tm}^{-1})$	Quadrupole Coeffi-			
			cient $K1 (m^{-2})$			
CLIC	0.08	-	-	-		
Q100	1.00	11.0	0.2061	4.852		
QFS	0.80	18.9	0.3541	3.530		
QTL	3.00	24.0	0.4497	0.7412		
QTN	0.30	5.33	0.0999	33.367		
QTR	0.308	1.4	0.0262	123.92		
QTS	1.5	24.0	0.4497	1.482		

Note: all values assume max. operating current

Multipole Decomposition

- Generally, the fields in accelerator magnets can be decomposed as a superposition of the different multipole contributions
- Radial field at any location within the aperture can be expanded in terms of the harmonics as

$$B_{r}(r,\theta) = \sum_{n=1}^{\infty} \left(\frac{r}{r_{0}}\right)^{n-1} B_{n}(r_{0}) \sin n\theta + A_{n}(r_{0}) \cos n\theta \quad \text{(European convention)}$$

Clearly we can find a multipole field by summing up these contributions, but what about decomposing our field simulated in FEMM to check the strength of these terms?

where n = 1 is the **dipole** contribution

- n = 2 is the **quadrupole** contribution
- n = 3 is the **sextupole** contribution

and so on...

Sample the field and inverse Fourier transform, either normal/skew separately or complex coefficient as shown

$$B_{n}(r_{0}) = \frac{2}{M} \sum_{m=0}^{M-1} B_{r}(r_{0}) \sin n\theta_{m} \text{ NORMAL}$$
1:

$$A_{n}(r_{0}) = \frac{2}{M} \sum_{m=0}^{M-1} B_{r}(r_{0}) \cos n\theta_{m} \text{ SKEW}$$
2:

$$C_{n}(r_{0}) = \frac{1}{M} \sum_{m=0}^{M-1} B_{m}e^{-in\theta_{m}} = B_{n}(r_{0}) + iA_{n}(r_{0})$$

11/03/2021

$$au_{quantum} = rac{ au_E}{(\#\sigma_{bucket}^2)} \exp(\#\sigma_{bucket}^2/2) \qquad au_{touschek} = rac{48\pi\gamma^2\sigma_x\sigma_y\sigma_s}{Nr_0^2c} (rac{dE}{E})_{bucket}^3 \qquad \left(rac{\Delta E}{E_s}
ight)_{\max} = \sqrt{rac{qVeta^2}{\pi h\eta E_s} [2\cos\phi_s + (2\phi_s - \pi)\sin\phi_s]}$$

11/03/2021

Quantum and Touschek effects

Touschek:

- Beam has most momentum spread in x

- Intra beam scattering trasfers momentum between planes

- If transfer to longitudinal plane too large, particle ends up outside bucket

- Particles outside bucket lose energy until lost in the aperture

3.If Ps > bucket height ->loss Ps Bucket s

11/03/2021