# Space Charge Tune Shift JAI lectures - Hilary Term 2021

### **Hector Garcia-Morales**

University of Oxford and CERN

hector.garcia.morales@cern.ch





### Table of contents

Introduction

Space Charge Forces

Image Effects

Coherent Effects

Space Charge limit

Summary

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects
- ▶ Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects
- ▶ Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects.
- ▶ Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects.
- ▶ Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects.
- Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects.
- Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

- ▶ Brief introduction to a complex topic.
- Understand the concept of Space Charge.
- Distinguish different types of effects.
- Understand the limitations imposed in the accelerator operation and performance.

- ▶ We will derive some basic parameters related to space charge.
- For more detailed derivations and more realistic cases please go to references.

### References

### Specialized courses

- 1. S. Sheehy, "Space charge tune shift", JAI lectures 2019 https://indico.cern.ch/event/774280/contributions/3217261/.
- 2. K.Schindl "Space charge", CAS lectures https://cds.cern.ch/record/941316?.
- 3. M.Migliorati, "Space Charge Effects and Instabilities", https://indico.cern.ch/event/779575/contributions/3244564/.

### **Books**

- 1. I. Hofmann "Space Charge Physics for Particle Accelerators", Springer 2017.
- 2. H. Wiedemann "Particle Accelerator Physics", Springer 2015.

The beam is a distribution of charged particles i.e. they create en EM fields that affect their dynamics.

- Direct fields.
- ► Image fields.
- ▶ Wakefields (we will cover that in Instabilities lectures).

The beam is a distribution of charged particles i.e. they create en EM fields that affect their dynamics.

- Direct fields.
- ► Image fields.
- ▶ Wakefields (we will cover that in Instabilities lectures).

The beam is a distribution of charged particles i.e. they create en EM fields that affect their dynamics.

- Direct fields.
- ► Image fields.
- ▶ Wakefields (we will cover that in Instabilities lectures).

The beam is a distribution of charged particles i.e. they create en EM fields that affect their dynamics.

- Direct fields.
- Image fields.
- Wakefields (we will cover that in Instabilities lectures).

The beam is a distribution of charged particles i.e. they create en EM fields that affect their dynamics.

- Direct fields.
- Image fields.
- Wakefields (we will cover that in Instabilities lectures).

Electric field generated by a point-like charge q:

$$F_{\text{elec}} = \frac{e^2}{4\pi\epsilon r^2} \tag{1}$$

$$q_1 \qquad q_2 \qquad \qquad \vec{F}$$
Repulsive!

Since the particle is moving with some speed v, this is equivalent to a current carrying wire with I=qv.

$$F_{\text{wire}} = \frac{\mu_0 I}{4\pi r^2} = \frac{v^2}{c^2} F_{\text{elec}}$$

$$(2)$$
Attractive!

The overall force is repulsive:

$$F_{\text{total}} = (1 - v^2/c^2)F_{\text{elec}} \tag{3}$$

we see that for  $v \to c$  the force  $F_{\text{total}}$  vanishes.

What does this mean?

Two main regimes exist to describe the effects of Coulomb interactions in a system with many particles.

Which regime are we? Debye length

$$\lambda_D = \sqrt{\frac{\epsilon_0 \gamma^2 k_B T}{q^2 n}} \tag{4}$$

### Collisional regime

Dominated by particle-on-particle collisions and described by single particle dynamics.

### Space Charge regime

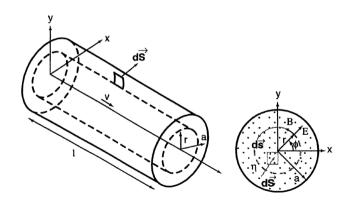
Dominated by the self fields of the particle distribution and it is described by collective effects.

$$\lambda_D \gg a$$

$$\lambda_D \ll a$$

Simple model: beam as a continuous cylinder of charge q, length I and radius a.

$$\rho(r) = qn(r) = \frac{I_{\text{beam}}}{\pi a^2 v} \tag{5}$$



# Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0}$$

$$\int_{V} \nabla \cdot E dV = \int_{S} V$$

$$\pi r^2 I \frac{\eta}{} = E_R 2\pi r I$$

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$\epsilon_0$$

(6)

$$\int_{S} \sqrt{\times BaS}$$

$$dS$$
 (1)

# Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0} \tag{6}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S}$$

$$E_r = \frac{1}{r}$$

(7)

$$\phi$$

$$\oint \vec{B} d\vec{S} = \int_{S} \nabla \times$$

$$B_{\phi} = \frac{1}{2\pi c_0 c^2} \frac{r}{c^2}$$

$$2\pi\epsilon_0c^2$$
  $a^2$ 

### Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0} \tag{6}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S} \tag{7}$$

cylinder of radius r and length 1:

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$E_r = \frac{1}{2\pi\epsilon_0\beta_C} \frac{r}{a^2}$$

# Magnetic field

$$\nabla \times \vec{B} = \mu_0 \vec{J} \tag{10}$$

Stoke's law

(8)

$$\oint \vec{B}d\vec{S} = \int_{S} \nabla \times \vec{B}d\vec{S} \tag{11}$$

$$B_{\phi} 2\pi r = \mu_0 \pi r^2 \beta c \eta \tag{12}$$

$$B_{\phi} = \frac{I}{2\pi\epsilon_0 c^2} \frac{r}{a^2} \tag{13}$$

### Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0} \tag{6}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S} \tag{7}$$

cylinder of radius r and length 1:

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$E_r = \frac{1}{2\pi\epsilon_0\beta c} \frac{r}{a^2}$$

# Magnetic field

$$\nabla \times \vec{B} = \mu_0 \vec{J} \tag{10}$$

Stoke's law

(8)

(9)

$$\oint \vec{B}d\vec{S} = \int_{S} \nabla \times \vec{B}d\vec{S} \tag{11}$$

$$B_{\phi} 2\pi r = \mu_0 \pi r^2 \beta c \eta \tag{12}$$

$$B_{\phi} = \frac{I}{2\pi\epsilon_0 c^2} \frac{r}{a^2} \tag{13}$$

### Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0} \tag{6}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S} \tag{7}$$

cylinder of radius r and length 1:

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$E_r = \frac{1}{2\pi\epsilon_0\beta_C} \frac{r}{a^2}$$

# Magnetic field

$$abla imes ec{\mathcal{B}} = \mu_0 ec{J}$$
 (10)

Stoke's law

(8)

(9)

$$\oint \vec{B}d\vec{S} = \int_{S} \nabla \times \vec{B}d\vec{S} \tag{11}$$

$$B_{\phi} 2\pi r = \mu_0 \pi r^2 \beta c \eta \tag{12}$$

$$B_{\phi} = \frac{I}{2\pi\epsilon_0 c^2} \frac{r}{a^2} \tag{}$$

### Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0} \tag{6}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S} \tag{7}$$

cylinder of radius r and length l:

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$E_r = \frac{1}{2\pi\epsilon_0\beta_C} \frac{r}{a^2}$$

# Magnetic field

$$\nabla \times \vec{B} = \mu_0 \vec{J} \tag{10}$$

Stoke's law:

(8)

(9)

$$\oint \vec{B}d\vec{S} = \int_{S} \nabla \times \vec{B}d\vec{S} \qquad (11)$$

$$B_{\phi} 2\pi r = \mu_0 \pi r^2 \beta c \eta \tag{12}$$

$$B_{\phi} = \frac{I}{2\pi\epsilon_0 c^2} \frac{r}{a^2}$$

### Electric field

$$\nabla \cdot \vec{E} = \frac{\eta}{\epsilon_0} \tag{6}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S} \tag{7}$$

cylinder of radius r and length 1:

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$E_r = \frac{I}{2\pi\epsilon_0\beta c} \frac{r}{a^2}$$

# Magnetic field

$$abla imes ec{B} = u_0 ec{J}$$

Stoke's law:

(8)

(9)

$$\oint ec{B} dec{S}$$

$$\oint \vec{B}d\vec{S} = \int_{S} \nabla \times \vec{B}d\vec{S} \qquad (11)$$

$$B_{\phi}2\pi r = \mu_0 \pi r^2 \beta c \eta$$

$$B_{\phi} = \frac{I}{2\pi\epsilon_0 c^2} \frac{r}{a^2}$$

(12)

(10)

# Electric field

$$abla \cdot ec{\mathcal{E}} = rac{\eta}{\epsilon_0}$$

Gauss' law:

$$\int_{V} \nabla \cdot \vec{E} dV = \int_{S} \vec{E} d\vec{S}$$

cylinder of radius r and length 1:

$$\pi r^2 I \frac{\eta}{\epsilon_0} = E_R 2\pi r I$$

$$E_r = \frac{1}{r}$$

 $E_r = \frac{I}{2\pi\epsilon_0\beta c} \frac{r}{a^2}$ 

Magnetic field

(6)

(7)

(8)

(9)

$$abla imes ec{B} = u_0 ec{J}$$

Stoke's law:

$$\oint$$

$$\oint$$

$$\oint \vec{B} d\vec{S} = \int_{S} \nabla \times \vec{B} d\vec{S}$$

$$J$$
  $Js$   $B_{\phi}2\pi r = \mu_0\pi r^2 \beta c \eta$ 

 $B_{\phi} = \frac{I}{2\pi\epsilon_0 c^2} \frac{r}{a^2}$ 

$$\int_{S} \sqrt{\lambda} B ds$$

(10)

(11)

The force acting on a test particle is given by the Lorentz equation:

$$F_r = q(E_r - v_s B_\phi) \tag{14}$$

where:

$$F_r = \frac{el}{2\pi\epsilon_0\beta c\gamma^2} \frac{r}{a^2} \tag{15}$$

and in transverse coordinates:

$$F_{x} = \frac{el}{2\pi\epsilon_{0}\beta c\gamma^{2}a^{2}}x, \quad F_{y} = \frac{el}{2\pi\epsilon_{0}\beta c\gamma^{2}a^{2}}y$$
 (16)

# Space Charge Forces: circular vs. Gaussian beam

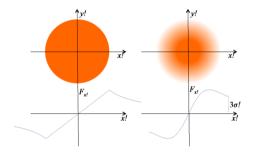


Figure: Space charge force for a homogeneous circular beam (left) and a Gaussian-shaped beam (right).

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds \qquad (19)$$

n our case  $\Delta K = K_{SC}$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds \qquad (20)$$

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3} \tag{22}$$

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0 I}{ea^2 \beta^3 \gamma^3 c}\right) x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds \qquad (19)$$

n our case  $\Delta K = K_{SC}$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds \qquad (20$$

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3} \tag{22}$$

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds \qquad (19)$$

n our case  $\Delta K = K_{SC}$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds \qquad (20)$$

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3}$$
 (22)

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds$$
 (19)

n our case  $\Delta K = K_{SC}$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds \qquad (20)$$

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3}$$
 (22)

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds$$
 (19)

In our case  $\Delta K = K_{SC}$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds$$
 (20)

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3}$$
 (22)

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds$$
 (19)

In our case  $\Delta K = K_{SC}$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds \qquad (20)$$

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3}$$
 (22)

SC produces an extra defocusing. Let's include it in the Hill's equation:

$$x'' + (K(s) + K_{SC}(s))x = 0$$
 (17)

$$x'' + \left(K(s) - \frac{2r_0I}{ea^2\beta^3\gamma^3c}\right)x = 0 \quad (18)$$

Tune shift due to an error in focusing strength  $\Delta K$ :

$$\Delta Q_{x,y} = \frac{1}{4\pi} \int \Delta K(s) \beta_{x,y}(s) ds$$
 (19)

In our case  $\Delta K = K_{SC}$ :

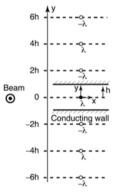
$$\Delta Q_{x,y} = \frac{1}{4\pi} \int K_{SC}(s) \beta_{x,y}(s) ds$$
 (20)

$$\Delta Q_{x,y} = -\frac{r_0 RI}{e\beta^3 \gamma^3 c} \left\langle \frac{\beta_{x,y}(s)}{a^2(s)} \right\rangle \qquad (21)$$

$$\Delta Q_{x,y} = -\frac{r_0 N}{2\pi \epsilon_{x,y} \beta^2 \gamma^3}$$
 (22)

### Image Effects

A second effect is coming from image currents due to conducting walls.



Electric field produced by a charge  $\lambda$  at a distance  $2n \cdot d$ :

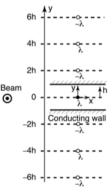
$$E_y = \frac{\lambda}{2\pi\epsilon_0} \frac{1}{d} \tag{23}$$

$$E_{2h} = \frac{\lambda}{2\pi\epsilon_0} \left( \frac{1}{2h - y} - \frac{1}{2h + y} \right) \quad (24)$$

$$E_{4h} = \frac{\lambda}{2\pi\epsilon_0} \left( \frac{1}{4h - y} - \frac{1}{4h + y} \right) \quad (25)$$

### Image Effects

A second effect is coming from image currents due to conducting walls.



Electric field produced by a charge  $\lambda$  at a distance  $2n \cdot d$ :

$$E_{y} = \frac{\lambda}{2\pi\epsilon_{0}} \frac{1}{d} \tag{23}$$

$$E_{2h} = \frac{\lambda}{2\pi\epsilon_0} \left( \frac{1}{2h - y} - \frac{1}{2h + y} \right) \quad (24)$$

$$E_{4h} = \frac{\lambda}{2\pi\epsilon_0} \left( \frac{1}{4h - y} - \frac{1}{4h + y} \right) \quad (25)$$

### Image Effects

Let's do some algebra:

 $=\frac{\lambda}{4\pi\epsilon_0 h^2} \frac{\pi^2}{12} y$ 

$$E_{inh} = (26)$$
 We obtain and forces:
$$= (-1)^n \frac{\lambda}{2\pi\epsilon_0} \left( \frac{1}{2nh+y} - \frac{1}{2nh-y} \right) = (27)$$

$$= (-1)^n \frac{\lambda}{4\pi\epsilon_0} \frac{y}{n^2h^2}$$

$$E_{ix} = (28)$$

$$F_{iy} = \sum_{n=1}^{\infty} E_{iny} = \frac{\lambda}{4\pi\epsilon_0 h^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} y = (29)$$

$$F_{iy} = (29)$$

(30)

We obtain the correspoinding fields and forces:

$$E_{ix} = -\frac{\lambda}{4\pi\epsilon_0 h^2} \frac{\pi^2}{12} x \qquad (31)$$

$$F_{iy} = \frac{e\lambda}{\pi\epsilon_0 h^2} \frac{\pi^2}{48} y \qquad (32)$$

$$F_{iy} = -\frac{e\lambda}{\pi\epsilon_0 h^2} \frac{\pi^2}{48} x \tag{33}$$

#### Incoherent Tune Shift

The total constribution to the incoherent tune shift can be summarized:

$$\Delta Q_{x} = -\frac{2r_{0}I_{b}R\langle\beta_{x}\rangle}{qc\beta^{3}\gamma} \left(\frac{1}{2\langle a^{2}\rangle\gamma^{2}} - \frac{\pi^{2}}{48^{2}}\right)$$
(34)

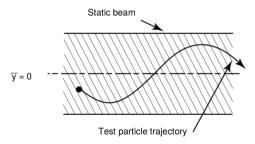
$$\Delta Q_y = -\frac{2r_0 I_b R \langle \beta_y \rangle}{q c \beta^3 \gamma} \left( \frac{1}{2 \langle a^2 \rangle \gamma^2} + \frac{\pi^2}{48^2} \right)$$
 (35)

- ▶ Direct field.
- Image field.

### Coherent vs Incoherent effects

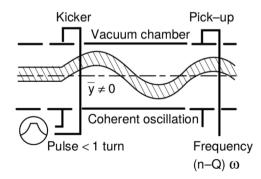
#### Incoherent

Each particle is independent (has its own betatron oscillation, phase and tune). Impossible to observe any betatron motion. The beam "does not move".



#### Coherent

The kick gets a fast deflection that affects the full distribution and starts to perform betatron oscillations as a whole. The source of space charge is now moving.



### Coherent Tune Shift

Taking  $\rho$  the beam pipe radius and  $\bar{x}$  the center o mass position. Image charge at  $b=\rho^2/\bar{x}$ .

$$E_{ix} = \frac{\lambda}{2\pi\epsilon_0} \frac{1}{b - \bar{x}} \approx \frac{\lambda}{2\pi\epsilon_0} \frac{1}{b} = \frac{\lambda}{2\pi\epsilon_0} \frac{\bar{x}}{\rho^2}$$
 (36)

$$F_{ix} = \frac{e\lambda}{2\pi\epsilon_0} \frac{\bar{x}}{\rho^2} \tag{37}$$

$$\Delta Q_{x,y} = -\frac{r_0 R \langle \beta_{x,y} \rangle I}{e c \beta^3 \gamma \rho^2} = -\frac{r_0 \langle \beta_{x,y} \rangle}{2\pi \beta^2} \frac{N}{\gamma \rho^2}$$
(38)

- ▶ The force is linear in  $\bar{x}$ .
- ▶  $1/\gamma$  dependence.
- The coherent tune shift is never positive.
- Perfectly conducting beampipe assumed. Realistic effects are delicate.

#### Laslett coefficients

A more realistic scenario is when we consider elliptic, unbunched uniformly distirbuted beams travelling at a speed  $\beta c$  through an elliptic vacuum chamber. For these geometries the tune shift can be expressed in terms of the "laslett coefficients".

Incoherent:  $\epsilon_{0,1,2}$ , Coherent:  $\xi_{1,2}$ 

$$\Delta Q_{y,inc.} = \frac{-Nr_0 \langle \beta_y \rangle}{\pi \beta^2 \gamma} \left( \frac{\epsilon_0^y}{b^2 \gamma^2} + \frac{\epsilon_1^y}{h^2} + \beta^2 \frac{\epsilon_2^y}{g^2} \right)$$
(39)

$$\Delta Q_{y,coh.} = \frac{-Nr_0 \langle \beta_y \rangle}{\pi \beta^2 \gamma} \left( \frac{\xi_1^y}{h^2} + \beta^2 \frac{\xi_2^y}{g^2} \right) \tag{40}$$

| Laslett                                                                                                                                                                                                                                      | Circular            | Elliptical           | Parallel plates   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------|
| coefficients                                                                                                                                                                                                                                 | (a=b, w=h)          | (e.g. $w = 2h$ )     | (h/w = 0)         |
| $\varepsilon_0^{\mathrm{x}}$                                                                                                                                                                                                                 | 1/2                 | $\frac{b^2}{a(a+b)}$ |                   |
| $arepsilon_0^{\mathbf{y}} \ arepsilon_1^{\mathbf{x}} \ arepsilon_1^{\mathbf{y}}$                                                                                                                                                             | 1/2                 | $\frac{b}{a+b}$      |                   |
| $\varepsilon_1^{\mathrm{x}}$                                                                                                                                                                                                                 | 0                   | -0.172               | -0.206            |
| $\varepsilon_1^{\mathrm{y}}$                                                                                                                                                                                                                 | 0                   | 0.172                | 0.206             |
|                                                                                                                                                                                                                                              | 1/2                 | 0.083                | 0                 |
| $egin{array}{c} oldsymbol{\xi}_1^{\mathrm{x}} \ oldsymbol{\xi}_1^{\mathrm{y}} \ oldsymbol{arepsilon}_2^{\mathrm{x}} \ oldsymbol{arepsilon}_2^{\mathrm{y}} \ oldsymbol{arepsilon}_2^{\mathrm{x}} \ oldsymbol{\xi}_2^{\mathrm{x}} \end{array}$ | 1/2                 | 0.55                 | $0.617(\pi^2/16)$ |
| $\varepsilon_2^{\mathrm{X}}$                                                                                                                                                                                                                 | $-0.411(-\pi^2/24)$ | -0.411               | -0.411            |
| $\varepsilon_2^{ar{y}}$                                                                                                                                                                                                                      | $0.411(\pi^2/24)$   | 0.411                | 0.411             |
| $\xi_2^{\mathrm{x}}$                                                                                                                                                                                                                         | 0                   | 0                    | 0                 |
| $\xi_2^{ m y}$                                                                                                                                                                                                                               | $0.617(\pi^2/16)$   | 0.617                | 0.617             |

#### Laslett coefficients

A more realistic scenario is when we consider elliptic, unbunched uniformly distirbuted beams travelling at a speed  $\beta c$  through an elliptic vacuum chamber. For these geometries the tune shift can be expressed in terms of the "laslett coefficients".

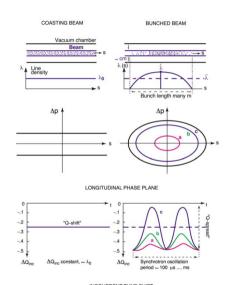
Incoherent:  $\epsilon_{0,1,2}$ , Coherent:  $\xi_{1,2}$ 

$$\Delta Q_{y,inc.} = \frac{-\textit{Nr}_0 \langle \beta_y \rangle}{\pi \beta^2 \gamma} \left( \frac{\epsilon_0^y}{b^2 \gamma^2} + \frac{\epsilon_1^y}{h^2} + \beta^2 \frac{\epsilon_2^y}{g^2} \right) \tag{39}$$

$$\Delta Q_{y,coh.} = \frac{-Nr_0 \langle \beta_y \rangle}{\pi \beta^2 \gamma} \left( \frac{\xi_1^y}{h^2} + \beta^2 \frac{\xi_2^y}{g^2} \right) \tag{40}$$

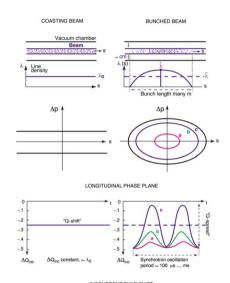
| Laslett                                                                                                                                                                                                                                                                                                    | Circular            | Elliptical           | Parallel plates   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|-------------------|
| coefficients                                                                                                                                                                                                                                                                                               | (a=b, w=h)          | (e.g. $w = 2h$ )     | (h/w = 0)         |
| $\varepsilon_0^{\mathrm{x}}$                                                                                                                                                                                                                                                                               | 1/2                 | $\frac{b^2}{a(a+b)}$ |                   |
| $\varepsilon_0^{\mathrm{y}}$                                                                                                                                                                                                                                                                               | 1/2                 | $\frac{b}{a+b}$      |                   |
| $\varepsilon_1^{\mathrm{x}}$                                                                                                                                                                                                                                                                               | 0                   | -0.172               | -0.206            |
| $egin{array}{c} arepsilon_1^{ m x} \ arepsilon_1^{ m y} \end{array}$                                                                                                                                                                                                                                       | 0                   | 0.172                | 0.206             |
|                                                                                                                                                                                                                                                                                                            | 1/2                 | 0.083                | 0                 |
| $\xi_1^y$                                                                                                                                                                                                                                                                                                  | 1/2                 | 0.55                 | $0.617(\pi^2/16)$ |
| $\varepsilon_2^{\mathrm{x}}$                                                                                                                                                                                                                                                                               | $-0.411(-\pi^2/24)$ | -0.411               | -0.411            |
| $\varepsilon_2^{ar{y}}$                                                                                                                                                                                                                                                                                    | $0.411(\pi^2/24)$   | 0.411                | 0.411             |
| $egin{array}{c} oldsymbol{\xi}_1^{\mathrm{x}} \ oldsymbol{\xi}_1^{\mathrm{y}} \ oldsymbol{\varepsilon}_2^{\mathrm{y}} \ oldsymbol{\varepsilon}_2^{\mathrm{y}} \ oldsymbol{\xi}_2^{\mathrm{x}} \ oldsymbol{\xi}_2^{\mathrm{y}} \ oldsymbol{\xi}_2^{\mathrm{y}} \ oldsymbol{\xi}_2^{\mathrm{y}} \end{array}$ | 0                   | 0                    | 0                 |
| $\xi_2^{\mathrm{y}}$                                                                                                                                                                                                                                                                                       | $0.617(\pi^2/16)$   | 0.617                | 0.617             |

- ➤ So far we just considered unbunched homogeneous beams. Create a constant tune shift. Easy to solve.
- When bunched beams are considered, the space charge effects are more notorious.
- ► In bunched beams, each "slice" of the beam feels a different space charge.
- Synchrotron oscillations modulate the space charge force felt by a single particle.
- ▶ This generates a tune spread.



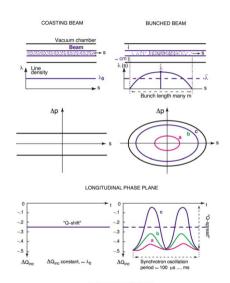
INCOHERENT TUNE SHIFT

- ➤ So far we just considered unbunched homogeneous beams. Create a constant tune shift. Easy to solve.
- When bunched beams are considered, the space charge effects are more notorious.
- ► In bunched beams, each "slice" of the beam feels a different space charge.
- Synchrotron oscillations modulate the space charge force felt by a single particle.
- This generates a tune spread.



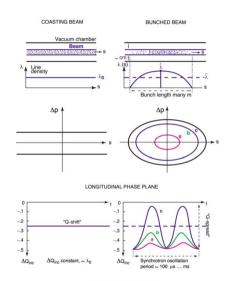
INCOHERENT TUNE SHIFT

- ➤ So far we just considered unbunched homogeneous beams. Create a constant tune shift. Easy to solve.
- When bunched beams are considered, the space charge effects are more notorious.
- ► In bunched beams, each "slice" of the beam feels a different space charge.
- Synchrotron oscillations modulate the space charge force felt by a single particle.
- This generates a tune spread.



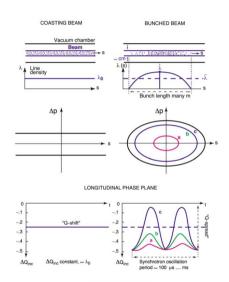
INCOHERENT TUNE SHIFT

- ➤ So far we just considered unbunched homogeneous beams. Create a constant tune shift. Easy to solve.
- When bunched beams are considered, the space charge effects are more notorious.
- ► In bunched beams, each "slice" of the beam feels a different space charge.
- Synchrotron oscillations modulate the space charge force felt by a single particle.
- This generates a tune spread.



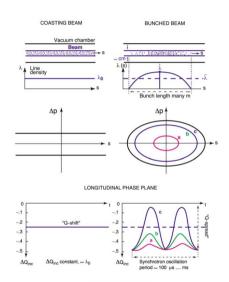
INCOHERENT TUNE SHIFT

- ➤ So far we just considered unbunched homogeneous beams. Create a constant tune shift. Easy to solve.
- When bunched beams are considered, the space charge effects are more notorious.
- ► In bunched beams, each "slice" of the beam feels a different space charge.
- Synchrotron oscillations modulate the space charge force felt by a single particle.
- This generates a tune spread.



INCOHERENT TUNE SHIFT

- ➤ So far we just considered unbunched homogeneous beams. Create a constant tune shift. Easy to solve.
- When bunched beams are considered, the space charge effects are more notorious.
- ► In bunched beams, each "slice" of the beam feels a different space charge.
- Synchrotron oscillations modulate the space charge force felt by a single particle.
- This generates a tune spread.



INCOHERENT TUNE SHIFT

# Space Charge Limit

Space Charge may limit the operation if the tune shift is too large and important resonances are crossed.

$$\Delta Q \sim \frac{N}{\beta^2 \gamma^2} \tag{41}$$

What can we do?

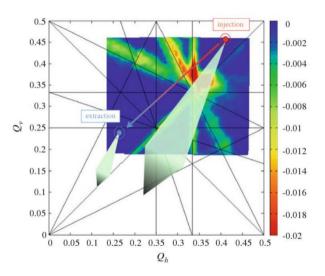
# Space Charge Limit

Space Charge may limit the operation if the tune shift is too large and important resonances are crossed.

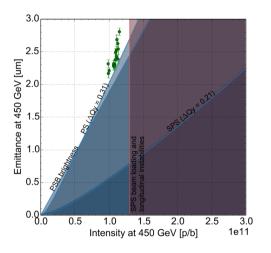
$$\Delta Q \sim \frac{N}{\beta^2 \gamma^2} \tag{41}$$

What can we do?

# Space Charge Limit

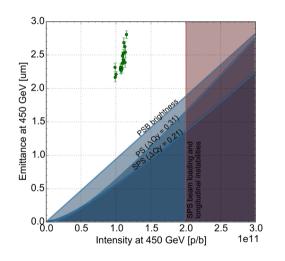


# Space Charge Limit: How to mitigate it



- At CERN accelerator chain, current injector configuration limits the bunch intensity.
- ➤ To overcome this limitation, a major upgrade of the injectors is required to achieve HL-LHC desired performance.
- ► In the example, we can see that the PSB, the PS and the SPS need to be upgraded.

# Space Charge Limit: How to mitigate it



#### Linac

▶ Linac4  $(H^-)$  replaces Linac2  $(H^+)$ .

### **PSB**

- Energy upgrade.
- ▶ Injection: 160 MeV (50 MeV).
- Extraction: 2 GeV (1.4 GeV).

#### PS

► Replace 43 dipoles.

#### **SPS**

Cabling and Acceleration system.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread
- ► Two main effects: incoherent and coherent.
- ▶ There are ways to mitigate the impact of space charge.
- ► Many other effects not considered here.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread
- Two main effects: incoherent and coherent.
- There are ways to mitigate the impact of space charge
- ► Many other effects not considered here.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread
- ► Two main effects: incoherent and coherent.
- There are ways to mitigate the impact of space charge.
- Many other effects not considered here.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread.
- ► Two main effects: incoherent and coherent.
- There are ways to mitigate the impact of space charge.
- ► Many other effects not considered here.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread.
- ► Two main effects: incoherent and coherent.
- There are ways to mitigate the impact of space charge.
- Many other effects not considered here.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread.
- ► Two main effects: incoherent and coherent.
- There are ways to mitigate the impact of space charge.
- Many other effects not considered here.

- ▶ Space Charge limits the performance of particle accelerators.
- Particular impact on low-energy hadron machines.
- We mainly focused on the induced tune shift and tune spread.
- ► Two main effects: incoherent and coherent.
- ▶ There are ways to mitigate the impact of space charge.
- Many other effects not considered here.

# Thank you!