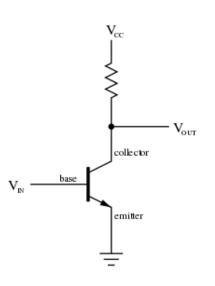
Past, Present, and Future of Radiation Effects Education

Professor Ron Schrimpf and Professor Ken Galloway Institute for Space and Defense Electronics Vanderbilt University


The RADSAGA Final Conference and Industrial Event – May 18, 2021

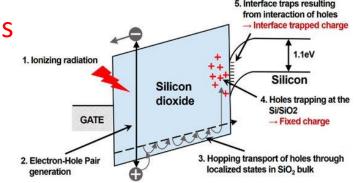
Disclaimer

The views expressed in this presentation are those of the authors only and do not necessarily represent the views of Vanderbilt University or our research sponsors and partners.

Historical Perspective ~ 1950s

- Nuclear weapons under development by a number of countries
- Nuclear reactor a great hope for a future source of power
- Research on neutron displacement effects in reactor structural components and degradation of electronic piece-parts used in reactor control circuitry
- Semiconductor industry started following ~1947 invention of transistor
- Great interest in exploiting the transistor, not only in computers, but also in military and space electronics
- Sputnik 1 October 1957
- Little known and much to be learned

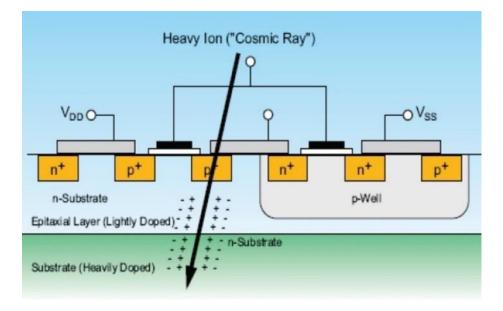
Historical Perspective ~ 1960s


- July 9, 1962 Starfish, an experimental U.S. nuclear weapon detonated
- October 1962 several similar Soviet nuclear events
- Nuclear contamination of the exo-atmosphere (Van Allen belts)
- February 1963 accumulating radiation damage caused transistor failure in Telstar 1 – the first commercial communications satellite
- Prior to this, rad-effects studies was primarily concerned with effects on semiconductor bulk material

Honolulu 1450 km away

Historical Perspective – 1960s, 1970s

- Transient radiation effects, neutron damage mostly bipolar devices
- ~ 1958 neutron effects on BJT gain Messenger and Spratt
- ~ 1960 invention of the integrated circuit Noyce, Kilby
- ~ 1964 discovery of TID effects in MOS devices Hughes
- Early 1960s, (SSI) tens of transistors/chip
- In 1962, total IC market of \$4 million, U.S. DoD
- 1965 Moore's Law articulated
- Late 1960s (MSI) hundreds of transistors/chip
- 1971 Intel released a 4-bit microprocessor (4004) with 2,300 transistors
- 1970s TID MOS basic mechanisms charge generation, charge transport, interface charge buildup, separating N_{it} and N_{ot}
- 1975 SEUs first observed in satellite systems Smith, Holman, Binder
- 1979 sea-level cosmic ray single event upset in electronics Ziegler


Historical Perspective - First NSREC 1964

- Held July 20-23, 1964 at the University of Washington, Seattle
- Evolved from AIEE and IRE/AIEE Meetings in 1962 and 1963
- ~215 attendees Chaired by John Winslow and Bill Price
- > 50 papers presented

Historical Perspective – 1980s, 1990s

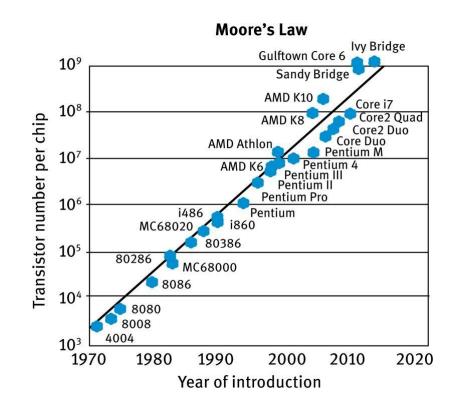
- More MOS TID basic mechanisms research Many
- 1986 1-megabit RAM with more than one million transistors introduced
- ~ 1986 Single event burnout (SEB) of power transistors Waskiewicz, et al.
- 1989 microprocessor chips passed the million-transistor mark
- ~ 1991 ELDRS (enhanced low dose rate sensitivity) Enlow, et al.
- Rapid growth in single event research: SEB, SET, multi-bit upsets, etc.

Historical Perspective - First RADECS 1989

• Held at La Grande-Motte, France

Historical Perspective – 1990s

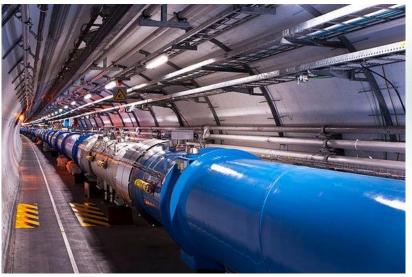
• Rad-Effects Community

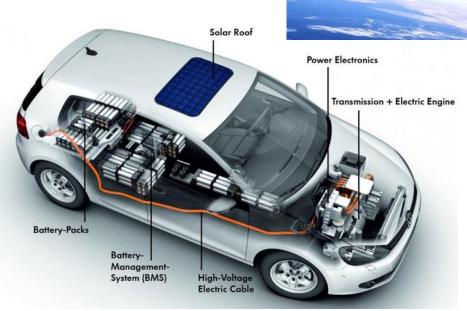

- ELDRS (enhanced low dose rate sensitivity)
- Isolation technology: LOCOS to STI and SOI technology
- Role of hydrogen in the build-up interface trapped charge
- Ultrathin SiO₂ gate oxides
- Rapid growth in single event research: SEB, SET, multi-bit upsets

Commercial/Industrial World

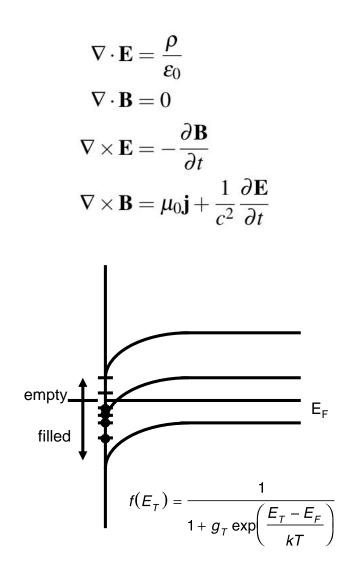
- LOCOS to shallow trench isolation (STI)
- Submicron silicon-gate CMOS
- MOS gate oxides < 10nm thick, gate stacks including high-K gate dielectrics
- Multiple-gate structures

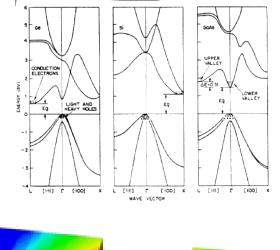
Historical Perspective – 2000s

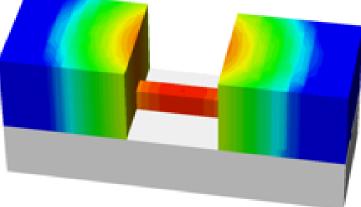

- SiGe, SOI, ultra-thin gate dielectrics, high-K gate dielectrics, FinFETs, etc.
- All of the above technologies have unique, interesting rad-effects challenges
- Rad-hard by design (RHBD) increases in importance
- 2005, microprocessor chips pass the billion-transistor mark
- On track for 7nm (and below) chips
- Moore's Law continues will it ever end?



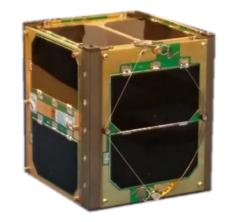
Today: Growing demand for radiation effects scientist and engineers

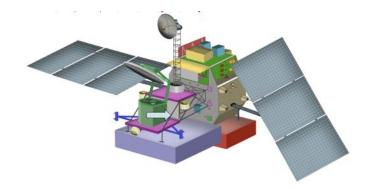

- Space
- Defense
- Terrestrial reliability
- Accelerators

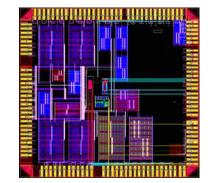




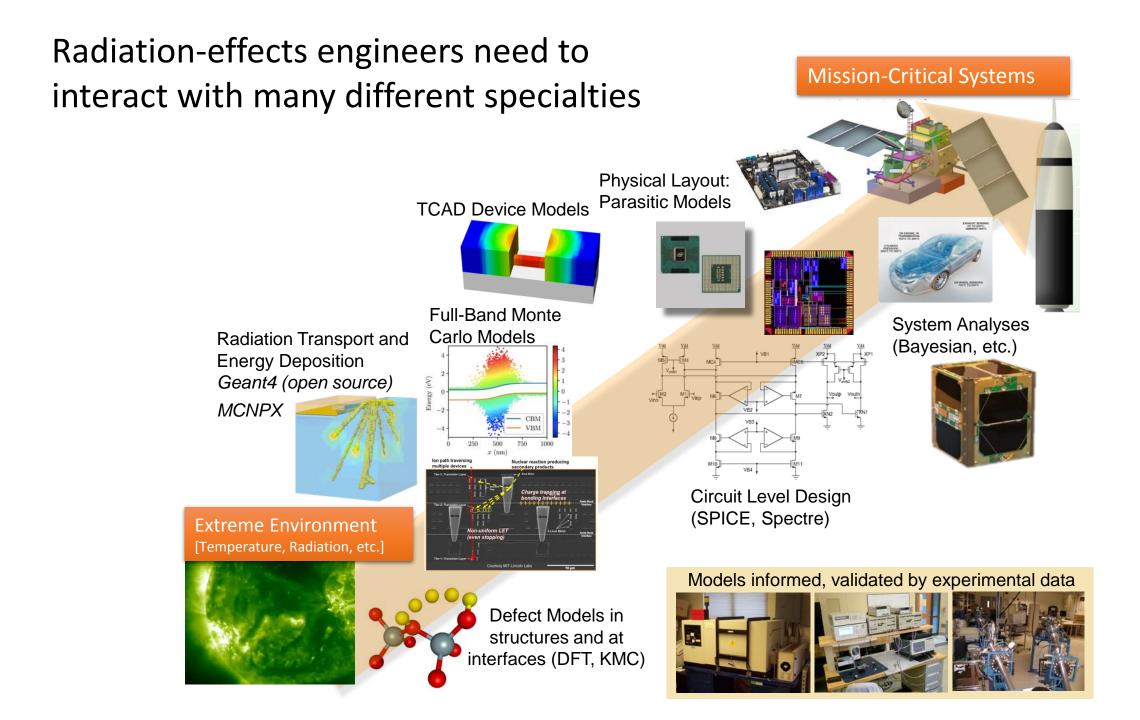
What radiation-effects engineers do...

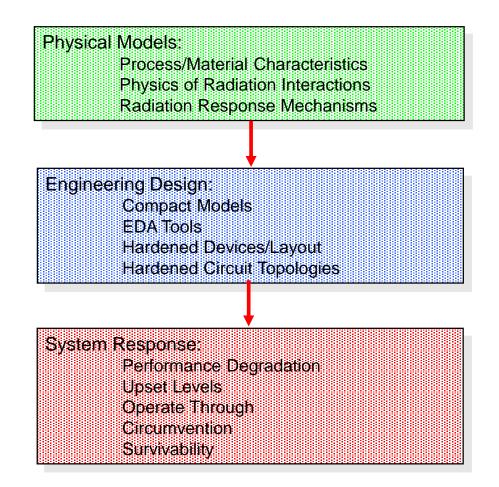




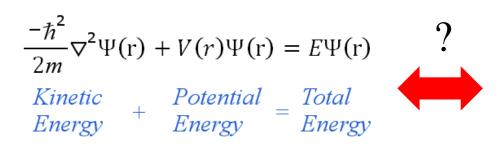

What people want...

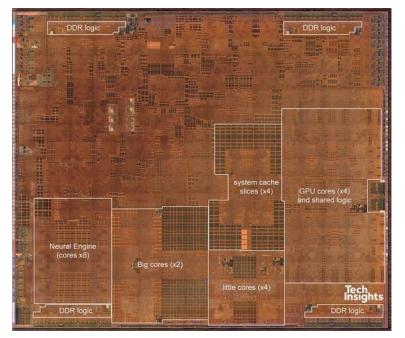
• Does it work?





Physics to Circuits?




Multiple knowledge and skills for radiation effects specialists

- Materials/Device Physics
- Circuits/IC Design
- Electrical Lab/Test
- Modeling/Simulation
- Systems Engineering
- Radiation-Specific Effects
- Radiation-Specific Test/Data/Standards

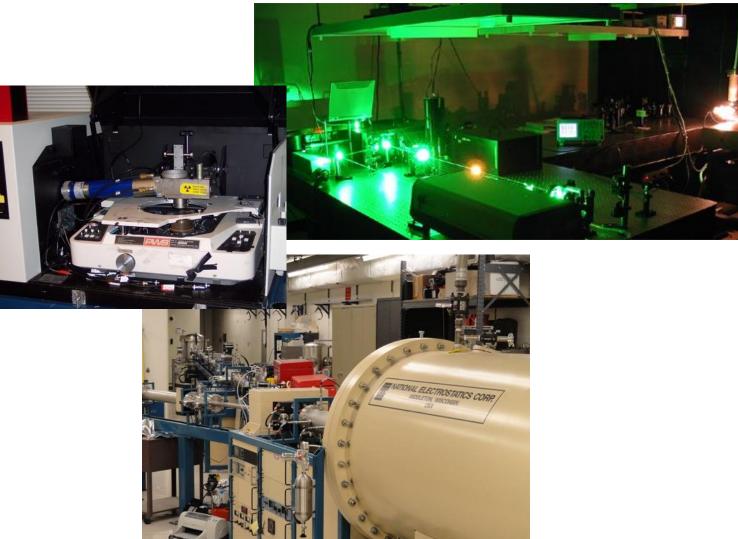
No one person does it all – it takes a team

Should I design a microprocessor using Schrodinger's equation?

Apple A12 (techinsights.com)

Perhaps if we had more computing power...

- A brute-force approach is rarely the best
- Each level of abstraction offers opportunities
- How do we make them work together?


Vanderbilt Advanced Computing Center for Research and Education (ACCRE)

Why do radiation-effects engineers need to understand modeling?

- Understand mechanisms and principles
- Guide testing and experiments
- Increase confidence in results
 - Not all test results are correct
- Predict results for environments that cannot be obtained in test facilities
- Document processes throughout the system life cycle
- Reuse designs and IP
- Save money

Connections between experiments and modeling

- Radiation test facilities are approximations to actual environments
- Radiation-effects engineers need to understand how the test is related to the application
 - Characteristics of the facility
 - Characteristics of the devices
 - Characteristics of the models

Paths to a career in radiation effects

Just as there are multiple talents and skills needed there have been multiple paths to the workforce

- Technical training / degree (2 year program)
 - Test, characterization, qualification, etc.
- Undergraduate degree, master's (BS, MS)
 - Work throughout rad effects ecosystem,
 - On the job training
- Grad School specialization (Master's, Ph.D.)
 - Work throughout ecosystem
 - Research
 - Often entry into leadership and innovation roles


Past (1950s – 1970s): education of radiation effects scientist and engineers

- Mostly trained in physics, some EEs
- Perhaps some knowledge of nuclear physics
- Jobs in 1950s and 1960s mostly defense related
- On the job training

Recent Past (1980s \rightarrow): education of radiation effects scientist and engineers

- Mostly electrical engineering, physics, or nuclear engineering backgrounds
- Course work in semiconductor device physics, IC design, materials, accelerator physics, etc.
- Most (BS, MS) enter workforce and receive on the job training
- Radiation effects specialization comes with graduate research (PhD) related to radiation effects
- Jobs in defense, space agencies, commercial space, research labs, government

Future: education of radiation effects scientist and engineers --- EU

- RADSAGA
 - Industry, universities, laboratories and test-facilities collaborating to train young scientists and engineers in all aspects related to electronics exposed to radiation
 - 15 Early-Stage Researchers trained through a well-defined program and structure --- PhD level program
 - Program nearing completion
- RADMEP European Master in Radiation and its Effects on MicroElectronics and Photonics Technologies
 - Objective: educate students in those advanced technologies --- MS level
 - Goal # 1: to improve their career prospects
 - Goal # 2: respond to the needs of the industry, agencies and society
 - Program kicks off Fall 2021 --- MS level program

Future: education of radiation effects scientist and engineers --- USA

- SCALE --- Workforce development program funded by U.S. Department of Defense led by Purdue University
 - Mentoring, internship matching and targeted research projects for college students interested in three microelectronics specialty areas: radiationhardening, heterogeneous integration/advanced packaging, and system on a chip
 - Vanderbilt University is radiation effects lead
 - Rad effects partners
 - Purdue, Georgia Tech, ASU, Brigham Young, St. Louis U., AFIT,
 - Goal: Work-ready graduates for U.S. defense and space industries
 - Emphasis on BS (1st degree level)

Future: education of radiation effects scientist and engineers --- USA

Our crystal ball !

Future: education of radiation effects scientist and engineers --- USA

- GREAT job opportunities in radiation effects field
- Most 1st degree graduates will enter workforce without any specific radiation effects knowledge --- on the job training
- A few universities will offer a few 1st degree introductory courses in radiation effects --- this will depend on student demand, faculty availability and interest, and academic departmental emphasis
- Radiation effects research leaders will come from graduate programs (PhD) where faculty have a commitment to radiation effects research
- Existence of these rad-related research programs is dependent on research support from government and industry

Future: education of radiation effects scientist and engineers — Conferences

Technical Conferences are an important element for education and continuing education for radiation effects specialists

- IEEE NSREC, RADECS, ICREED (emerging in China)
- In the future ...
 - Virtual?
 - In-Person?
 - Hybrid?

RADSAGA Graduates

WELCOME to the international radiation effects community ...

Radiation effects science and engineering is important, interesting and challenging ...

We hope you realize your dreams !

