Correlations of direct ionization effects from low-E protons to energetic heavy ions

17-19 May, 2021
RADSAGA Final Conference and Industrial event

Sascha Lüdeke, RADSAGA ESR 1, Work Package #1

Radiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators (RADSAGA) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement 721624. RADSAGA began in Mars 2017 and will run for 5 years.
Presentation outline

- General Objective
- Stopping Force Model
- Proton Direct Ionization Cross Section Model
- Proton Direct Ionization Test Guidelines
General Objective

- From GA:
 - "To study direct ionisation effects caused by low-energy protons as well as energetic heavy ions.... for space systems low-E proton sensitivity is a major reliability concern since their flux is large at low Earth orbits. Also at ground level, low-E singly charged particles such as protons or muons could have a significant impact on the SEU rate...."

- To build simple models to estimate (LEP-induced) SEUs and consecutively expedite the SER estimations for modern technologies
Stopping Force Model

- Combination of two (or three) models of electronic stopping force
 - Covering the low (Firsov or LSS), intermediate (Bohr), and high (Bethe) energies/velocities

- Modification and parametrisation of the stopping number equation from Bloch
 - Allows for smooth transition from low to high velocities with a single equation
 - Empirical parameterization

- Fitting the parameters to experimental data
 - Data provided by the Nuclear Data Service of the International Atomic Energy Agency (database originally collected and maintained by prof. Helmut Paul)
Stopping Force Model

Electronic stopping force (or Linear Energy Transfer)

\[- \left. \frac{dE}{dx} \right|_e = N \cdot S,\]

Where $N = \text{target atomic density}$, and stopping cross-section is

\[S = 4\pi Z_1^2 Z_2 \left(\frac{v_0}{v} \right)^2 2R\alpha_0^2 L\]

Stopping number
Stopping Force Model

Bloch's model (from textbooks) gives the stopping number as

\[L_{Bloch} = \ln \left(C \frac{m_e v^3}{Z_1 I v_0} \frac{1}{\sqrt{1 + \left(\frac{C v}{2Z_1 v_0} \right)^2}} \right) \]

At low (or intermediate) velocities

\[L_{Bloch} \approx \ln \left(C \frac{m_e v^3}{Z_1 I v_0} \right) \equiv L_{Bohr} \]

At high velocities

\[L_{Bloch} \approx \ln \left(\frac{2m_e v^3}{I} \right) \equiv L_{Bethe} \]

BUT DOES NOT WORK FOR \(v \rightarrow 0 \)
Stopping Force Model

Low velocity issue solved by

\[L_{\text{model}} = p_0 \cdot \ln(1 + p_1 \chi_{\text{Bloch}}) \]

Just need to fit to the data

<table>
<thead>
<tr>
<th>Proj</th>
<th>Trgt</th>
<th>Z1</th>
<th>Z2</th>
<th>p0</th>
<th>p1</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>Cu</td>
<td>2</td>
<td>29</td>
<td>1.23018</td>
<td>0.45466</td>
</tr>
<tr>
<td>F</td>
<td>Ti</td>
<td>9</td>
<td>22</td>
<td>0.92597</td>
<td>0.55335</td>
</tr>
<tr>
<td>Si</td>
<td>C</td>
<td>14</td>
<td>6</td>
<td>1.19375</td>
<td>0.27578</td>
</tr>
<tr>
<td>O</td>
<td>Ag</td>
<td>8</td>
<td>47</td>
<td>0.82555</td>
<td>0.87323</td>
</tr>
<tr>
<td>F</td>
<td>Ag</td>
<td>9</td>
<td>47</td>
<td>0.94510</td>
<td>0.74877</td>
</tr>
<tr>
<td>C</td>
<td>Ta</td>
<td>6</td>
<td>73</td>
<td>0.86102</td>
<td>0.83822</td>
</tr>
<tr>
<td>N</td>
<td>Si</td>
<td>7</td>
<td>14</td>
<td>0.83954</td>
<td>0.62323</td>
</tr>
<tr>
<td>Al</td>
<td>Al</td>
<td>13</td>
<td>12</td>
<td>1.17679</td>
<td>0.10577</td>
</tr>
</tbody>
</table>

Universal plot

\[\frac{L}{L_0} = \ln(1 + p_1 \cdot \chi_{\text{Bloch}}) \]

\[\frac{L}{L_0} = p_1 \cdot \chi_{\text{Bloch}} \]

\[\frac{L}{L_0} = \ln(p_1 \cdot \chi_{\text{Bloch}}) \]
Stopping Force Model

Accuracy of the model comparable to other established stopping force models

![Graph comparing stopping force models for O in Ni and H in Si](image)
Comparison between different models for H, He, O, Ar, Kr, and Xe projectiles in C, Al, Si, and Ni targets (model vs. experimental data)

<table>
<thead>
<tr>
<th></th>
<th>Low (<0.1 MeV/u)</th>
<th>Intermediate (0.1-10 MeV/u)</th>
<th>High (>10 MeV/u)</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{data}</td>
<td></td>
<td></td>
<td></td>
<td>5212</td>
</tr>
<tr>
<td>This Work</td>
<td>-8.26 ± 28.47</td>
<td>2.08 \pm 8.84</td>
<td>11.63 \pm 20.80</td>
<td>-1.26 ± 19.56</td>
</tr>
<tr>
<td>SRIM</td>
<td>-10.23 ± 37.44</td>
<td>1.70 \pm 8.25</td>
<td>8.51 \pm 18.48</td>
<td>-2.32 ± 24.28</td>
</tr>
<tr>
<td>DPASS</td>
<td>-19.21 ± 39.15</td>
<td>2.94 \pm 12.97</td>
<td>6.60 \pm 19.60</td>
<td>-4.83 ± 27.89</td>
</tr>
</tbody>
</table>

[SRIM]: Semi-empirical estimates developed by Ziegler et al. (http://www.srim.org/)
[DPASS]: Ab initio calculations developed by P. Sigmund et al. (https://www.sdu.dk/en/dpass)
Stopping Force Model

- **Pros:**
 - Simple equations and only a few parameters
 - Easy to implement anywhere (compared to e.g. SRIM)
 - Open source
 - Public Python package in progress

- **Cons:**
 - Currently parameters \((p_0, p_1)\) from lookup tables and interpolation
 - Uncertainties for projectile-target combinations outside current experimental \((Z_1, Z_2)\) space
Proton Direct Ionization Cross Section Model

- Combination of the stopping force model with straggling model [1]

- Estimation of **mean** and **variance** of energy deposition inside sensitive volume (SV) after BEOL
 - With **critical charge** \((Q_{\text{crit}}) \) it provides estimates for SEU cross-section
 ...
 - ...or more importantly by flipping the procedure...

- From experimental SEU data, one can estimate: **SV size**, **BEOL thickness**, and **\(Q_{\text{crit}} \)**

Straggling model vs. Geant4 simulations

H in 250nm Si
- $E_p = 0.6$ MeV Simulation
- $E_p = 0.6$ MeV Model
- $E_p = 0.8$ MeV Simulation
- $E_p = 0.8$ MeV Model
- $E_p = 1.0$ MeV Simulation
- $E_p = 1.0$ MeV Model

Normalized Energy Deposition vs. Probability Density Function
From *tail distributions* for energy deposition… …to deduce the SEU x-section vs. energy

CCDF = *Complementary Cumulative Density Function* or *Tail distribution*
Proton Direct Ionization Cross Section Model

Energy @ peak --> BEOL

Max. xsection --> aSV (lateral dims. For SV)

Peak shape --> hSV (thickness of SV) + Qcrit

BEOL stops the protons

PDI too low
Proton Direct Ionization Cross Section Model

- Numerical approach to determine PDI cross sections as a function of \((E_p, SV\ size, BEOL, Q_{\text{crit}})\) or \textit{vice versa} \textit{(via minimization)}

- Reduces the need of Monte Carlo simulations
 - Easier to implement
 - \textit{Less time consuming}

- Plans to implement similar approach for heavy-ion cross sections as well

- Public Python package in progress
Proton Direct Ionization Test Guidelines

- ESA-funded project with ALTER Technologies
 - Started in 2020
 - "Estimation of proton induced Single Event Effect rates in very deep submicron technologies"
 - SEE test procedures with LEP shall be defined in order to obtain meaningful and reproducible test results
 - Standard method to estimate the in-flight SEE rates induced by proton via direct ionization shall be defined in order to get accurate and reliable predictions.
- The developed model(s) will be utilized in this study
- Includes both experiments and simulations
THANK YOU

Any questions?

Contacts:
Sascha Lüdeke (sascha.a.f.ludeke@jyu.fi)
or
Arto Javanainen (arto.javanainen@jyu.fi)