Design of an experimental set-up for the measurement of LET distributions

17-19 May, 2021
RADSAGA Final Conference and Industrial event

Christoph Meyer, RADSAGA ESR 3, Work Package 1

RADiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators (RADSAGA) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement 721624. RADSAGA began in Mars 2017 and will run for 5 years.
Presentation outline

- Project outline
- Detectors
- Design of the experimental set-up
- Construction
- Summary and outlook
Project

- Measurement and simulation of LET distributions
 - Linear energy transfer: \(LET = \frac{dE}{dx} \)
 - Geant4 and Fluka

- Comparison of different types of thin semiconductor detectors
 - Increased accuracy with thinner geometries
 - Measurement of non-primary particles

- Relation of LET to SEE rates
Clinical relevance

- High dose area is not necessarily an area of high LET
Detectors

- **Measurement of LET distributions:**
 - Silicon detector:
 - 3D Mushroom detector (CMRP)
 - $d = 10 \, \mu m$
 - Diamond detector:
 - PTW microDiamond
 - $d = 1 \, \mu m$
Detectors

- **Measurement of SEU: ESA SEU monitor**
 - Reference monitor for SEU measurements
 - Different test patterns can be loaded
Design of the experimental set-up

- **Proposed experiments:**
 - **Measurement of LET distributions:**
 - Determination of applicability of Mushroom and microDiamond detector
 - Measurement in proton and heavy ion beams up to Bi in vacuum
 - **Measurement of SEEs:**
 - Special attention paid to sub-LET-threshold SEEs
 - Measurement with various thin foils in front of the detector
 - non-semiconductor materials found in chips, e.g. W
Design of the experimental set-up

- Measurement under vacuum conditions

- Requirements for the vacuum chamber:
 - Contain all detectors
 - Make image of the beam
 - Calibration
 - Flux determination
 - Heavy ion and proton measurements
 - Operation at different institutes
Component set-up

- Detectors (mD, ESA, mushroom)
- Collimators
- Target ladder
- Edge detectors
- Scionix detector and Lanex screen
- Entrance window

Beam direction

Camera

16/05/2021, RADSAGA Final Conference - Christoph Meyer
Field-edge detectors

- Four Scionix scintillation detectors with photomultiplier tubes
Target ladder

- Possibility to insert three different thin foils
- Connection to stepper motor
Stand-alone system

- Independent vacuum
- Connection to vacuum pipe at KVI possible
- Support frame with 40 cm height
- Entrance and exit foil
Construction progress
Construction progress
Summary and outlook

- Design of the vacuum chamber is completed
- Construction takes place at the moment
- A few mechanical problems have to be sorted out
- Experiments at KVI can hopefully start in late summer/autumn
- Vacuum chamber has an independent vacuum for use at other institutes
- Modify the set-up for use at different institutes
Bibliography

[3] PTW Freiburg, MicroDiamond Detector, Brochure, accessed: 03.03.2020