

Unique particle beams and energies at CERN applied to radiation testing of electronics

17-19 May, 2021 RADSAGA Final Conference and Industrial event

Vanessa Wyrwoll, RADSAGA ESR 4, Work Package 1

RADiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators (RADSAGA) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement 721624. RADSAGA began in Mars 2017 and will run for 5 years.

□ Introduction, Motivation & Background

10/05/2021, RADSAGA Final Conference - Author

Introduction, Motivation & Background Monte Carlo Simulations & Experiments

□ Introduction, Motivation & Background

- Monte Carlo Simulations & Experiments
- Conclusions

□ Introduction, Motivation & Background

Monte Carlo Simulations & Experiments

Conclusions

Overview of SEU cross section of same device

Ferlet-Cavrois et al., 2012

Overview of SEU cross section of same device

Ferlet-Cavrois et al., 2012

The Challenge of Space Application Tests

KVI CART (Netherlands)

oto: Peter Tahi

□ Introduction, Motivation & Background

Monte Carlo Simulations & Experiments

Conclusions

10/05/2021, RADSAGA Final Conference - Author

^{10/05/2021,} RADSAGA Final Conference - Author

2. Step: The relation between LET, energy and Z

- kinetic energy for target-like fragments for UHE ions and protons very low!
- fission for 150 GeV/n Pb:
 16.5 < Z < 80.5
 - very high kinetic energy (comparable to the primary beam one)
- leading to a low LET, even if the primary ion is very heavy

Simulation of full Z and LET distribution on silicon

20

Simulation of LET distribution of 9.3 MeV/n ⁴⁰Ar on silicon

3. Step: Different energy and Z but same LET

- Ar has a LET of 7.2 MeVcm²/mg, but produces fragments with LETs over 30 MeVcm²/mg
- double peak behavior stemming from:

Simulation of LET distribution of 9.3 MeV/n ⁴⁰Ar on silicon

3. Step: Different energy and Z but same LET

- Ar is having a LET of 7.2 MeVcm²/mg, but produces fragments with LETs over 30 MeVcm²/mg
- double peak behavior stemming from:
 - light fragments (0.5 < Z < 12.5)

^{10/05/2021,} RADSAGA Final Conference - Author

^{10/05/2021,} RADSAGA Final Conference - Author

^{10/05/2021,} RADSAGA Final Conference - Author

Simulation of LET distribution of 9.3 MeV/n ⁴⁰Ar on silicon

3. Step: Different energy and Z but same LET

- Ar is having a LET of 7.2 MeVcm²/mg, but produces fragments with LETs over 30 MeVcm²/mg
- double peak behavior stemming from:
 - light fragments (0.5 < Z < 12.5)
 - target-like fragments (12.5 < Z < 16.5)
 - projectile fragments (16.5 < Z < 20.5)
 - fusion products (20.5 < Z < 35.5)

3. Step: Different energy and Z but same LET

RADSAGA

Simulation of LET distribution of 9.3 MeV/n ⁴⁰Ar on silicon

- Ar is having a LET of 7.2
 MoV(am²/mg, but produces from
 - MeVcm²/mg, but produces fragments with LETs over 30 MeVcm²/mg
 - fusion products (20.5 < Z < 35.5)
 - which present a LET value
 (> 30 MeVcm²/mg) significantly above the possible LET of silicon fragments in silicon

^{10/05/2021,} RADSAGA Final Conference - Author

Calculation of the simulated heavy ion cross section

4. Step: Convolution of experimental cross section and simulated probability

Calculation of the simulated heavy ion cross section

4. Step: Convolution of experimental cross section and simulated probability

10/05/2021, RADSAGA Final Conference - Author

^{10/05/2021,} RADSAGA Final Conference - Author

^{10/05/2021,} RADSAGA Final Conference - Author

27

for low energies, heavy ions have a higher cross sections, which decreases with increasing energy > caused by a decreasing

fusion probability with energy

for low energies, heavy ions have

decreases with increasing energy

above 1 GeV/n: distributions are

particle species including protons

comparable and the saturation

value is very similar for all

caused by a decreasing

fusion probability with

a higher cross sections, which

energy

10/05/2021, RADSAGA Final Conference - Author

^{10/05/2021,} RADSAGA Final Conference - Author

Introduction, Motivation & Background Monte Carlo Simulations & Experiments Conclusions

- For projectile E kin > 1 GeV/n
 - UHE ions & high energy proton sub-LET SEE cross sections are similar
- Fusion products:
 - significant sub-LET impact, especially for low energy heavy ion beams (common for SEE space component tests)
- Monte Carlo tools and associated SEE models enables simulation of a broad variety of
 - particle species
 - energies
 - highly relevant for estimations of SEE in space and high-energy accelerators

- Very-high energy ions mainly produce:
 - i. target-like fragments, with LETs similar to those produced in proton interactions
 - ii. fission-like fragments, lighter and with an energy per nucleon similar to the projectile's one, and hence a lower LET
- Lower energy ions can induce fusion reactions, generating larger LET products

- Longitudinal energy deposition mechanisms
- Dosimetry work
 - related to the heavy ion test campaign 2018 using a medical QA ionization chamber array and gafchromic films
- Very High Energy Electron tests at CLEAR (CERN):
 - Dosimetry purposes with different medical ionization chambers
 - Flash SEE experiments with an ESA SEU monitor
 - Gafchromic film measurements

Contribution to other publications, related to the heavy ion test campaigns

Thank you! It was a great journey