





## Bridging methodology from component to system-level for the assessment of radiation effects in digital systems

### 17-19 May, 2021 RADSAGA Final Conference and Industrial event

### Israel DA COSTA LOPES, RADSAGA ESR 13, Work Package #3

RADiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators (RADSAGA) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement 721624. RADSAGA began in Mars 2017 and will run for 5 years.





- Introduction and motivation
- Case study and instrumentation development
- Radiation experiments
- Bridging methodology development





3



Which kind of digital systems can be exposed in those applications?



Supernova

RADSAGA

Applications

**Geostationary Orbit (GEO)** 

Altitude

35Mm



Environments

# Digital system and component definitions



- Systems can be classified in different ways:
  - Application dependent
  - RADSAGA context system definition
  - Different system classes are proposed
- In this work:

RADSAGA

- Component defined as an Integrated Circuit (IC)
- **System** defined as an assembly of components
- New trend on embedded digital systems
  - System-on-modules
  - Typical Embedded System components

#### **RADSAGA system definition classes**

| Class       | Systems considered                            |
|-------------|-----------------------------------------------|
| Extra Small | SoC, System-in-package and Package-on-Package |
| Small       | Typical small-form-factor SoM                 |
| Medium      | Typical two-sided SBC                         |
| Large       | Cubesat-like small system                     |
| Extra Large | 50cm x50cm box (Maximum size)                 |

#### System-on-Module(SoM)



Memories

How to assure the radiation hardness of those systems?

# Motivation: Transition between component to system-level approach



|                                        | Component-<br>level approach | System-level<br>approach |
|----------------------------------------|------------------------------|--------------------------|
| Direct obtention of system reliability | 8                            | $\ddot{\mathbf{c}}$      |
| Total cost                             | 8                            | $\mathbf{:}$             |
| Component observability                | $\mathbf{\dot{c}}$           | 8                        |
| Reusability of results                 | <u></u>                      | 8                        |



- Re-use component-level RHA knowledge and methods
- Re-use component-level data
- Make the system-level approach more reliable
- Facilitate the cultural transition





- To develop a RHA methodology case study for providing component and system-level data:
  - Select a representative Hardware system
  - Develop a case study on the target hardware
  - Design an experimental setup

#### Selected hardware system:

- Commercial Industrial System on modules (SoM)
- Requires a Carrier board for external interfaces
- Based on Programmable System-on-Chips
- Also include external memories, transceivers and power regulators







### **SoM generations from Enclustra**

- Z7 SoM
  - Based on 28nm Planar Zynq7000 SoC

- ZU+ SoM
  - Based on 16nm FinFET ZynqUltrascale+ SoC







Representative application of an aerospace embedded digital system



# SEE code-instrumentation development



#### Instrumentation Level (IL) functions:

• IL0

RADSAGA

- Application output (PWM) checksum
- Watchdogs for control flow verification
- IL1
  - External memories (DDR and Flash) built-in ECCs
  - Intermediate steps (AES, FIR...) checksum
- IL2
  - Internal memories observability (OCM, and PL FIFO) built-in ECC
  - Exception abort status reporting (cache)





#### Instrumentation overheads

Application





- TID instrumentation for monitoring parametric degradation:
  - PL:
    - RO IP-core for sensing gate delay variations
    - Configurable RO lengths and feedback
  - PS:
    - Software for measuring the RO frequencies

#### **Ring Oscillator IPCore schematic**



### **Implementation results**

|                              | Z7         | ZU+  |
|------------------------------|------------|------|
| Number of ROs                | 27         | 21   |
| RO length                    | 1024, 3000 | 1500 |
| RO frequency at<br>78°C(kHz) | 1900, 580  | 2000 |

# Experiment objectives and timeline



Objectives:

RADSAGA

- To obtain component-level and system-level data:
  - To irradiate the entire system containing different package thicknesses
- To validate the instrumentation layer:
  - Error capturing capability
  - Observability increase

Experiment motivations:

- Atmospheric neutrons
  - High penetration and atmospheric representation
  - 184MeV protons
    - High penetration and space representation
  - X-ray experiment
  - Localized and fast experiments
  - Laser experiments
    - Get insight on the SoC components



# **184MeV Proton experiments**



- Facility parameters:
  - **Facility:** KVI-CART in Netherlands
  - Spectrum: 184MeV
  - Flux: 1-3E+06 p/cm2/s
- Test methodology
  - Beam layout:
    - Z7: Two Z7 SoMs in parallel (one partially)
    - ZU+: Single SoM
- Result summary
  - Lack of observability on analog parts and power regulators
  - AES SEFI has the lowest cross-section in both technologies
  - No external memory MBU observed (Flash and DDR)
  - Exception aborts observed
  - Most of events observed thanks to the IL0 and IL1

#### **KVI-CART** beam line



#### Z7 beam layout



#### **Z7 Proton results**



Z7 V1 - DDR Z7 V1 - NO DDR Z7 V2 - DDR





#### Facility parameters:

- Facility: PRESERVE facility at IES
- **Spectrum:** <300KeV photons
- Dose rate: 8.33 rad/s
- Test methodology
  - Beam layout:
    - Only one group of ROs was irradiated

#### Z7 vs ZU+ comparison summary

|                     | Z7       | ZU+      |
|---------------------|----------|----------|
| Delay Drift         | Negative | Positive |
| Spatial variability | High     | Low      |
| Maximum Recovery    | <40%     | >90%     |
| Maximum Delay drift | ~-4pS    | ~2pS     |
| Dose resistance     | >430krad | 340krad  |

#### **Test setup picture**



#### Beam layout schematic



#### Z7 vs ZU+ worst case delay





### Laser experiments



Facility parameters:

- Facility: IES SPA laser facility
- Spectrum: 189-310 pJ
- Equivalent LET: 19-32 MeV/mg/cm2
- Flux: 10-20 pulses per second
- Test methodology
  - Samples: Baredie Z7 and ZU+ SoCs
  - Regions of Interest (ROI):
    - SoC PL and PS resources

#### Test setup





#### **Z7 Laser vs Proton results**

#### Result summary

- Z7
  - High error counts and cross-sections
  - Exceptions mainly generated by caches
  - Checksum Errors and SEFIs observed
  - BRAM errors not detected by FIFO ECC
- ZU+
  - Only timeouts observed in the PL and PS







### Experiment preparation

- The test plan should predict possible issues during the experiment
- Reliability on the experimental setup depends on adequate protocols
- Flexible benchmark for increasing system exposition (workload, memory usage...)
- To validate the instrumentation is essential
- Experiment execution



#### **Experiment decision making Flowchart**

- Dynamic reporting
- Increase system exposition
- Increase observability level
- Increase radiation level
  - 11/05/2021, RADSAGA Final Conference Author



### Bridging methodology: System analysis







### Bridging methodology: System Instrumentation and Test plan







### Bridging methodology: System-component correlation







### Bridging methodology: System reliability calculation





# Bridging methodology summary





RADSAGA

Decisive steps:

- Adding instrumentation for increasing observability
- Combining both component and system-level data for calculating system-level reliability

#### Methodology limitations

- Requirement of final application
- Hardware documentation requiremnt
- Critical vs non-critical erro classification

#### Case study limitations

- Lack of observability on analog parts
- Limited number of events

#### Case study improvements

- Automated instrumenation addition
- Cross-platform instrumentation library



# Case study event rate estimation



#### Data used for the calculations:

- Component-level cross-section from literature multiplied by bits used
- System-level cross-sections extracted from 184MeV protons experiments
- Rate calculation at OMERE for LEO ISS mission
  - Combination of component and system-level data
- Optimistic estimation could validate a short mission (0.25 years)
- Conservative estimation would not validate short mission
  - Based on safety margins







- The possibility of a Bridging RHA methodology from component to system-level was investigated
- A digital System-on-module case study including additional instrumentation were developed
- Neutron, 184MeV protons, X-ray and laser radiation experiments were conducted for accumulating data
- The lessons learned and experience acquired during the system-level experiments was shared
- Available component-level tools, data and methods were used for developing a bridging methodology
- The challenging comprehension of fault propagation in SoCs could be explored thanks to the instrumentation and laser testing
- Several paths were identified for improving the proposed methodology:
  - Standardization, portability and automation of the instrumentation
- The question of predicting system-level SEE rate is still a challenging task:
  - A first-step was taken towards the objective
  - Extension of the proposed methodology
    - Different systems, technologies and instrumentations approaches
    - The inclusion of coupled-effects on the SEE rate prediction

