Design and development of a highly integrated and radiation-tolerant Software-Defined Radio (SDR) platform for space applications Institute of Space Systems - Avionics Systems Department

Final Conference and Industrial & RADNEXT Public Kick-Off 17th – 20th May 2021

Jan Budroweit

Knowledge for Tomorrow

About the speaker

Jan Budroweit

- Studied Communication and Information Technologies in Hamburg
- Since 2013 at DLR as scientist and engineer
- Responsible engineer for the communication subsystem at the Eu:CROPIS mission (launched in 2018 – second satellite mission fully supported by DLR)
- PhD candidate at TU Hamburg-Harburg
- Research activities
 - Future radio systems for space missions (communications and payload)
 - Radiation effects on electronics and systems

Outline

- Background and Motivation
- Risk Assessment Approach for COTS Usage in Space
- Radiation Testing on RFIC
- System-Level Verification
- Conclusion

Background and Motivation

Knowledge for Tomorrow

Introduction and Motivation

State of the art radio systems for space missions

- Radio systems for spacecraft/satellites are usually designed and develop for one specific application:
 - ➢ GPS-Receiver
 - TV-Broadcast
 - Satellite communication (TM/TC)
 - ➢ Radio and RF Payloads (e.g. AIS, ADS-B, …)
 - ▶ ...
- In the beginning, such radio system were designed discretely
 - \checkmark Very robust and reliable
 - No flexibility
 - Very large systems
- Software-Defined Radio (SDR) systems already established over the past decades in space
 - ✓ More flexibility in terms of data/signal processing adaption
 - ✓ Smaller systems
 - Just for a single application (e.g. GPS Receiver)

DLR.de • Chart 6

Introduction and Motivation

What is a Software-Defined Radio (SDR)?

- A SDR usually defines the signal processing in software:
 - Implementation on a DSP or FPGA
- Also consist of:
 - ADC and DAC
 - RF Front-End
- > RF Front-End mostly untouched and tailored to specific application requirements

Introduction and Motivation

The Generic Software-Defined Radio (GSDR)

- RF Front-Ends can now be configures by software thanks to RF Integrated Circuits (RFIC)
 - > A single hardware (radio) for operating multiple applications (two/three/four in one)
 - 10%: TM&TC SatCom <-> 90%: RF Payload (ADS-B Receiver, AIS Receiver, Spectral Monitoring, ...)
 - > Better utilization of limited resources (size, weight, power, ...) on a spacecraft

DLR.de • Chart 8

Introduction and Motivation

Constraints with RFICs

RFICs (AD9361) for SDR systems

<u>Pros</u>

- ✓ Frequency selection: 70 MHz to 6 GHz
- ✓ Adaptive sample rates: up to 64 MSPS
- ✓ Integrated RF technology (e.g. amplifiers, filter, ...).
- ✓ Small device
- ✓ "Low" power consumption

<u>Cons</u>

- Limited availability and manufacturers
- Very complex and highly integrated ICs
- High requirements (power, noise, stability, ...)
- Compatibility to FPGAs or Processors
- Not designed for the use in space!

Risk Assessment Approach for COTS Usage in Space

Knowledge for Tomorrow

Space mission survey

Traditional space missions

- High costs
- Low risk acceptance
- Intense QA
- Avoidance of COTS usage
- Long development time
- Standardization (ECSS)
 - High success rate

Eu:CROPIS, source: DLR

Huge gap between both mission approaches

CubeSat space missions

- Low costs
- High risk acceptance
- No QA
- COTS usage (only)
- Fast development time
- No standardization
 - Low success rate

Qtum's CubeSat , source: Qtum Foundation

Space mission survey

Traditional space missions

- High costs
- Low risk acceptance
- Intense QA
- Avoidance of COTS usage
- Long development time
- Standardization (ECSS)
 - High success

Eu:CROPIS, source: DLR

NewSpace missions

- Lower costs
- Medium risk acceptance
- COTS usage preferred
- Faster development time

New Approach, no standards defined yet

CubeSat space missions

- Low costs
- High risk acceptance
- No QA
- COTS usage (only)
- Fast development time
- No standardization
 - Low success

SpaceX StarLink Satellite(s), source: GunterSpace

Qtum's CubeSat , source: Qtum Foundation

Considerations for the Use of COTS

STRENGTHS

- Functional performance
- Latest technologies
- Availability on stock
- Fast proof-of-concept
- Competitive market
- Low costs compared to space EEE parts
- ITAR free

WEAKNESSES

- Poor control of supply chain
- Obsolescence and counterfeit
- Limited technology insight
- Testability of devices
- Limited qualification from manufacturer
- Up-screening efforts (RHA, RLAT)

Radiation Hardness Assurance (RHA) for COTS

- Using COTS in space is not new, but becomes more and more important due to NewSpace
- Usually, for traditional space missions, those COTS devices were completely up-screened (e.g., according to ECSS)
 Not unlikely that up-screening costs are higher than a comparable space-qualified EEE part
- To avoid the expensive up-screening, RHA can be mainly considered since radiation is the most critical environmental stress.
- ✓ Certain publications were published for RHA on COTS (also given as guidelines from NASA).
 - RHA approaches mainly based on engineering judgment or does not cover a system-point of view (in terms of failure propagation)
 - > A numerical-based criticality analysis for RHA would be beneficial
 - > A RHA approach that also covers the system perspective of view
 - > A guidance on how to select between COTS and RadHard / space-qualified EEE parts

FMECA-based RHA approach

- The proposed RHA approach is based on the Failure Mode, Effects and Criticality Analysis (FMECA)
- Well known tool in space quality assurance for criticality analysis
- Based on three parameter:

RADSAGA

- Severity Number (SN)
- Probability Number (PN)
- Detection Number (DN)

Severity Level	Severity Number (SN)	Severity Category	Failure Effect
1	4	Catastrophic	Propagation of failure to other systems, assemblies or equipment
2	3	Critical	Loss of functionality
3	2	Major	Degradation of functionality
4	1	Negligible	Minor or no effect

PN Level	PN Limits	PN
Very likely	$P > 1 \times 10^{-1}$	4
Likely	$1 \times 10^{-3} < \mathbf{P} \le \times 10^{-1}$	3
Unlikely	$1 \times 10^{-5} < \mathbf{P} \le \times 10^{-3}$	2
Very unlikely	$\mathbf{P} \le 1 \times 10^{-5}$	1

Very unlikely

$10^{-3} < P \le \times 10^{-1}$	3	3	Unlikely	
$10^{-5} < P \le \times 10^{-3}$	2	2	Likely	
$P \le 1 \times 10^{-5}$	1	1	Very likely	
				5 A
	M. Sand Black	States and the second second	and the second s	-

4

FMECA-based RHA approach

- The FMECA-based RHA approach follows the following stages:
 - <u>Step 1</u>: System level breakdown structure into functional block design
 - <u>Step 2</u>: FMECA-based severity analysis performed on functional blocks
 - <u>Step 3</u>: Technology assessment and rating on functional blocks
 - <u>Step 4</u>: Evaluation of the FMECA-based criticality of selected devices.

10.3390/electronics10091008, source: Budroweit et. al

FMECA-based RHA approach: Example on a baseband processor

Step 2: Severity analysis

ID	Failure mode	Failure causes	Failure effects SN	Ň
BBP.1	HW Failure	SELs or high current states	permanent loss of system 3 functionality	\$
BBP.2	HW Failure	TIDs, long-term degra- dation	permanent loss of system 3 functionality	1
BBP.3	HW Failure	SHEs, non-recoverable state	permanent loss of system 3 functionality	}
BBP.4	HW Failure	SEFIs, recoverable state	temporary loss of system 2 functionality	2
BBP.5	SW Failure	SEU/MBU/SEFIs, OS crash	temporary loss of system 2 functionality	!
BBP.6	SW Failure	SEU/MBU/SEFIs, SW thread/process crash	temporary loss of 1 system-parts' functional- ity	

Step 3: Technology and device survey

Device	Techno.	Level	Review	Complex.	Perform.	Costs	Data
DSP	n.a.	All	n.a.	++	-	++	-+
ASIC	n.a.	All	n.a.	-	++		n.a.
FPGA	n.a.	All	n.a.	+	-+	+	++
SoC	n.a.	All	n.a.	-+	+	+	++

Device	Techno.	Level	Review	Complex.	Perform.	\mathbf{Costs}	Data
Xilinx Zynq- 7000	28 nm CMOS	Mil.	+	-+	-+	++	++
Xilinx Ultra- scale	16 nm FinFET	Mil.	+	-	-+	-+	+
Altera Cyclone- V	$28\mathrm{nm}$ CMOS	Auto.	-+	-+	-+	++	+
Microsem Smart- Fusion	i 130 nm CMOS	Mil.	+	-+	-+	++	+

FMECA-based RHA approach: Example on a baseband processor

Step 2: Severity analysis

ID	Failure mode	Failure causes	Failure effects S	SN
BBP.1	HW Failure	SELs or high current states	permanent loss of system functionality	3
BBP.2	HW Failure	TIDs, long-term degra- dation	permanent loss of system functionality	3
BBP.3	HW Failure	SHEs, non-recoverable state	permanent loss of system functionality	3
BBP.4	HW Failure	SEFIs, recoverable state	temporary loss of system functionality	2
BBP.5	SW Failure	SEU/MBU/SEFIs, OS crash	temporary loss of system functionality	2
BBP.6	SW Failure	SEU/MBU/SEFIs, SW thread/process crash	temporary loss of system-parts' functional- ity	1

FMECA-based RHA approach: Example on a baseband processor

Step 4: Criticality analysis

SEE Type	Orbit	LET threshold [MeV·cm ² /mg]	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Events/day (nominal)	Events/day (worst)
SEL SEL	GEO LEO	$\begin{array}{c} 1.23 \times 10^{+1} \\ 1.23 \times 10^{+1} \end{array}$	$\begin{array}{l} 2.98 \times 10^{-4} \\ 2.98 \times 10^{-4} \end{array}$	$\begin{array}{c} 5.02 \times 10^{-5} \\ 2.01 \times 10^{-5} \end{array}$	$\begin{array}{c} 5.66 \times 10^{-3} \\ 1.41 \times 10^{-3} \end{array}$
CRAM CRAM	GEO LEO	1.00×10^{-3} 1.00×10^{-3}	1.60×10^{-9} 1.60×10^{-9}	$\begin{array}{c} 1.36 \times 10^{-8} \\ 1.04 \times 10^{-8} \end{array}$	$\begin{array}{c} 3.23 \times 10^{-6} \\ 7.67 \times 10^{-7} \end{array}$
BRAM BRAM	GEO LEO	1.00×10^{-3} 1.00×10^{-3}	5.31×10^{-9} 5.31×10^{-9}	$\begin{array}{c} 2.37 \times 10^{-8} \\ 1.83 \times 10^{-8} \end{array}$	$\begin{array}{c} 5.80 \times 10^{-6} \\ 1.38 \times 10^{-6} \end{array}$
OCM OCM	GEO LEO	$\begin{array}{c} 1.00 \times 10^{-3} \\ 1.00 \times 10^{-3} \end{array}$	$\begin{array}{l} 2.40 \times 10^{-9} \\ 2.40 \times 10^{-9} \end{array}$	$\begin{array}{c} 4.96 \times 10^{-8} \\ 4.34 \times 10^{-8} \end{array}$	$\begin{array}{c} 1.38 \times 10^{-5} \\ 3.26 \times 10^{-6} \end{array}$
Sobel Processor	ISS ISS	-	6.61×10^{-9} 5.70×10^{-9}	-	$\begin{array}{c} 1.2 \times 10^{-2} \\ 1.4 \times 10^{-2} \end{array}$

ID	Orbit	Failure causes	Failure effects	SN	PN	DN	\mathbf{CN}
BBP.1	LEO	SELs or high current	permanent loss of	3	1	2	6
		states	system functionality				
BBP.1	GEO			3	2	2	12
BBP.2	LEO	TIDs, long-term	permanent loss of	3	1	2	6
		degradation	system functionality				
BBP.2	GEO			3	2	2	12
BBP.3	LEO	SHEs, non-	permanent loss of	3	0	-	0
		recoverable state	system functionality				
BBP.3	GEO			3	0	-	0
BBP.4	LEO	SEFIs, recoverable	temporary loss of	2	3	3	18
		state	system functionality				
BBP.4	GEO			2	3	3	18
BBP.5	LEO	SEU/MBU/SEFIs,	temporary loss of	2	3	3	18
		OS crash	system functionality				
BBP.5	GEO			2	3	3	18
BBP.6	LEO	SEU/MBU/SEFIs,	temporary loss	1	3	3	9
		SW thread/process	of system-parts				
		crash	functionality				
BBP.6	GEO		۳	1	3	3	9
BBP To	otal		Average CN	L (LE	(0)		9.5
BBDT	atal		Avorago CN		(0)		11.2
DD1 . 10	Juan		Average ON	(GI			11.0

FMECA-based RHA approach: Example on a baseband processor

Step 4: Criticality analysis

ID	\mathbf{Orbit}	Failure causes	Failure effects	\mathbf{SN}	PN	DN	CN
BBP.1	LEO	SELs or high current	permanent loss of	3	1	2	6
		states	system functionality				
BBP.1	GEO			3	2	2	12
BBP.2	LEO	TIDs, long-term	permanent loss of	3	1	2	6
		degradation	system functionality				
BBP.2	GEO			3	2	2	12
BBP.3	LEO	SHEs, non-	permanent loss of	3	0	-	0
		recoverable state	system functionality				
BBP.3	GEO			3	0	-	0
BBP.4	LEO	SEFIs, recoverable	temporary loss of	2	3	3	18
		state	system functionality				
BBP.4	GEO			2	3	3	18
BBP.5	LEO	SEU/MBU/SEFIs,	temporary loss of	2	3	3	18
		OS crash	system functionality				
BBP.5	GEO			2	3	3	18
BBP.6	LEO	SEU/MBU/SEFIs,	temporary loss	1	3	3	9
		SW thread/process	of system-parts				
		crash	functionality				
BBP.6	GEO			1	3	3	9
BBP.Te	otal		Average CN) (LE	O):		9.5
BBP.Te	otal		Average CN	(GE	o):		11.3
			0	``	1		

Knowledge for Tomorrow

RFIC - AD9361

- AD9361 •
 - Based on 65nm CMOS •
 - ADC/DAC •
 - Analog Technologies (e.g. Amps) •
 - Synthesizer •
 - Register •
 - State machine .
 - **Digital Interfaces** •
- SEE susceptibility •
 - SELs •
 - SEUs, MBUs •
 - SETs •
 - SEFIs •

Total ionizing dose effects testing

- Automatic test procedure that allows detailed investigation:
 - Current condition
 - State machine control
 - RX/TX Amplifiers
 - Mixer
 - Synthesizer/ADC/DAC
 - Filter response
 - .
- AD9361 is installed on daughterboard (blue) and is not surrounded by other sensitive devices (good DUT isolation)
- Carrier-board interfaces DUT and allows data access and controlling (shielded by lead bricks)

DLR de • Chart 23

Radiation Testing on RFICs

Total ionizing dose effects testing

- Co-60 Source of HZB (Potsdam) and • X-Ray machine from CERN
- Three tests in total: •
 - Co60: 2015 + 2018
 - Target dose: >190 krad(SiO2)

A

A

- In

- Dose rate: 11.5 krad(SiO2)/h •
- Samples: 2
- X-Ray: 2019
 - Target dose: 80Mrad(SiO2)
 - Dose rate: 4.1 Mrad(SiO2)/h
 - Samples: 2

Single event effects testing

- Single Event Effects testing performed under Proton and Heavy Ion
 - Proton: up to 190MeV (@KVI, Groningen, NL)
 - Heavy Ion: up to LET(eff) = 125 MeV.cm²/mg (@ UCL, Louvain la euve, BL)
- Test board has been developed for this propose
- Decapping required
- Two samples tested

Single event effects testing

- Complex test setup and procedure
- Scrubbing of registers
- Functional validation
- Independent RF Data evaluation (IQ Data)
- Automatic recovery

Single event effects testing

Examples of IQ Failures / Signatures

Single event effects testing

- No destructive events
- Very good SEE response
- Many SEUs, often not critical
- Mainly recovered by re-configuration
- IQ Failures: 50% hard; 50% soft
- Hard IQ Failure recovered by re-initialization
- Results presented for Heavy lons
- Proton response much lower (in order of ~10 events)
- Performing the FMECA-based RHA results into a very low criticality:
 - GEO (15yr) and LEO (2yr, 800km, SSO) reference mission:
 - Nominal conditions: YEARS for failure
 - Worst conditions: DAYS for failure

SEE Type	Orbit	$\begin{array}{l} {\rm LET\ threshold} \\ {\rm [MeV{\cdot}cm^2/mg]} \end{array}$	Limit sectio [cm ² /	cros n bit;dev	ss- E (n] na	vent Iomi al).	s/day -	y Ev (w	ents orst)	/day	
SEU SEU	GEO LEO	1.00×10^{-3} 1.00×10^{-3}	2.80 imes 2.80 imes	10^{-8} 10^{-8}	2.1 1.1	$23 \times 39 \times$	10^{-7} 10^{-7}	$4.4 \\ 1.0$	4×1 4×1	0^{-5} 0^{-5}	
MBU MBU	GEO LEO	1.00×10^{-3} 1.00×10^{-3}	$2.71 \times 2.71 \times$	10^{-9} 10^{-9}	2.' 2.	$76 \times 01 \times$	10^{-9} 10^{-9}	$\frac{6.3}{1.5}$	0×1 0×1	0^{-7} 0^{-7}	
$\begin{array}{c} \mathrm{SEFI}_{cfg} \\ \mathrm{SEFI}_{cfg} \end{array}$	GEO LEO	$\begin{array}{c} 1.00 \times 10^{-3} \\ 1.00 \times 10^{-3} \end{array}$	$\begin{array}{c} 8.01 \times \\ 8.01 \times \end{array}$	10^{-6} 10^{-6}	1.3 6.0	$30 \times 65 \times$	10^{-3} 10^{-4}	$2.8 \\ 6.5$	4×1 6×1	0^{-1} 0^{-2}	
$SEFI_{init}$ $SEFI_{init}$	GEO LEO	$\begin{array}{l} 4.56 \times 10^{+1} \\ 4.56 \times 10^{+1} \end{array}$	1.00 imes $1.00 imes$	10^{-6} 10^{-6}	3.9 1.0	$92 \times 04 \times$	10^{-8} 10^{-8}	$\frac{3.9}{1.0}$	1×1 3×1	0^{-6} 0^{-6}	
$\begin{array}{c} \mathrm{IQ}_{soft} \\ \mathrm{IQ}_{soft} \end{array}$	GEO LEO	1.00×10^{-3} 1.00×10^{-3}	1.95 imes 1.95 imes	10^{-5} 10^{-5}	1.4 7.0	$46 \times 68 \times$	10^{-3} 10^{-4}	3.2 7.4	0×1 1×1	0^{-1} 0^{-2}	_
$\begin{array}{l} \mathrm{IQ}_{hard} \\ \mathrm{IQ}_{hard} \end{array}$	GEO LEO	$\begin{array}{c} 1.00\times 10^{-3} \\ 1.00\times 10^{-3} \end{array}$	$\begin{array}{c} 1.25 \times \\ 1.25 \times \end{array}$	10^{-5} 10^{-5}	4.0 2.1	$02 \times 11 \times$	10^{-4} 10^{-4}	8.7 2.0	0×1 2×1	0^{-2} 0^{-2}	
ID	Orbit	Failure causes	Fa	ilure ef	fects		SN	PN	DN	CN	
RFIC.1	LEO	SELs or high curre	ent per	rmanent	loss	of	3	1	1	3	
RFIC.1	GEO	states	sys	stem fun	ctionali	ity	3	1	1	3	•
RFIC.2	LEO	TIDs, long-te	rm pei	rmanent	loss	of	3	1	2	6	
RFIC.2	GEO	degradation	sys	stem fun	ctional	lty	3	1	2	6	
RFIC.3	LEO	SHEs, no	on- per	rmanent	loss	of	3	0	-	0	
RFIC.3	GEO	recoverable state	sys	stem run	ctional	ity	3	0	-	0	
RFIC.4	LEO	SEFIs, recoveral	ble ter	nporary	loss	of	2	2	2	8	
RFIC.4	GEO	state	sys	stem iun	ctional	ity	2	4	2	16	
RFIC.5	LEO	SEUs/MBUs/SEF	Is, con	rupted	data	for	2	2	2	8	
RFIC.5	GEO	nivanu uata	cer	otion	JI OI	16-	2	2	2	8	
RFIC.6	LEO	SETs, invalid data	i coi	rupted	data	for	1	3	3	9	
			tra cep	otion	on or	re-					
RFIC.6	GEO						1	4	3	12	
RFIC.T RFIC.T	otal otal			A Av	verage verage	CN CN	(LE (GE	O): O):		5.7 7.5	

Knowledge for Tomorrow

GSDR: Final system design

- Hybrid system design of *COTS* and *RadHard* devices
- Verified and selected by the FMECA-based RHA approach
- An essential part of the system functionality is the software and operating system:
 - General functionality
 - Control of system
 - Detection of failures and recovery mechanism

GSDR: System-level verification

Purpose of system-level verification:

- Different task forms the overall system functionality
- Single failures can cause functional losses
- Verification of failure detection and potentially recovery

For TID:

✓ Co60-Source can be used (no limitation in space)

For SEE:

- Particle accelerators have only a narrow beam (<100mm diameter)
- Local irradiation (single devices or groups of the system)
- Failure propagation unclear
- How to test on system-level that exceed the narrow beam?
- What about multi-point of failures?

Possible solution for (soft) SEE:

✓ CHARM - Mixed-Field Radiation Facility (Neutron, Protons, Electrons)

DLR.de • Chart 32

System-Level Verification

GSDR: System-level verification at CHARM

• Similar differential flux compared to LEO mission (800km, SSA)

GSDR: System-level verification at CHARM

- Similar differential flux compared to LEO mission (800km, SSA)
- 2x GSDR prototypes (Rev B.)
- Complete autonomous setup
 - Exchange of RF and digital data
 - On-board data processing (e.g. for RF data)
 - Overvoltage and current detection and protection
 - System-Watchdog executes reset if heart-beat disappears
 - Time-Out of command response (power-cycle)
 - Soft-Watchdog (on program/application level)
 - Memory scrubbing (NAND boot device)
 - RFIC verification

. . .

DLR.de · Chart 34

System-Level Verification

GSDR: System-level verification at CHARM

- System(s) run with multiple tasks on request
 HK-Data, RF-Data aq., Spectrogram, ...
- \checkmark No degradation of voltage and current due to TID
- ✓ No SELs or destructive failures (not expected)
- Ability to perform self-recovery verified
- ✓ 100% recovery from failure to valid system operation
 - 95% of all failures were system crashes (Zynq + DDR3)
- ✓ No interrupted boot-processes observed (process takes ~15sec)
- ✓ No invalid data on boot devices (NAND flash)
- ✓ Minor errors observed on RFICs

<u>But:</u>

- Data fly-by storage on SD-Card critical (SD-Card broken)
 - SUT#2 (partially) not able to response on requested tasks

DLR.de · Chart 35

System-Level Verification

GSDR: System-Level verification at KVI

- GSDR system has been irradiated to Proton (max. 190MeV)
 - Two test campaigns
 - Focusing on sensitive parts (Zynq, DDR3 SDRAM, NAND and RFIC)
 - Same configuration and software were used as in CHARM (only exception: SD-Card removed)
 - Fluence:
 - GSDR Rev B.: 5.0×10^8 #/cm²
 - GSDR Rev C.: 2.5×10^9 #/cm²

GSDR. Rev B, source: Budroweit

DLR.de · Chart 36

System-Level Verification

GSDR: System-Level verification at KVI

- GSDR system has been irradiated to Proton (max. 190MeV)
 - Two test campaigns
 - Focusing on sensitive parts (Zynq, DDR3 SDRAM, NAND and RFIC)
 - Same configuration and software were used as in CHARM (only exception: SD-Card removed)
 - Fluence:
 - GSDR Rev B.: 5.0×10^8 #/cm²
 - GSDR Rev C.: 2.5×10^9 #/cm²
- Comparable saturation of cross-section (for selfrecovery)
 - ~1.9 × 10⁻⁸ cm²/device (proton #1)
 - ~2.6 × 10⁻⁸ cm²/device (proton #2)
 - $2.45 \times 10^{-8} \text{ cm}^2/\text{device}$ (CHARM)

${f SEE} {f Type}$	Orbit	LET threshold	Limit cross- section	$\frac{\mathbf{E} \mathbf{vents} / \mathbf{d} \mathbf{a} \mathbf{y}}{(\mathbf{nominal})}$	Events/day (worst)
$\begin{array}{l} \operatorname{SEFI}_{Self} \\ \operatorname{SEFI}_{PC} \end{array}$	GEO GEO	$7.00 \times 10^{+1}$ $7.00 \times 10^{+1}$	$\begin{array}{c} 2.18 \times 10^{-8} \\ 1.57 \times 10^{-9} \end{array}$	1.95×10^{-2} 1.32×10^{-3}	$\begin{array}{c} 1.12 \times 10^{+0} \\ 6.97 \times 10^{-2} \end{array}$
$\begin{array}{c} \mathrm{SEFI}_{Self} \\ \mathrm{SEFI}_{PC} \end{array}$	LEO LEO	$7.00 \times 10^{+1}$ $7.00 \times 10^{+1}$	$\begin{array}{c} 2.18 \times 10^{-8} \\ 1.57 \times 10^{-9} \end{array}$	8.62×10^{-2} 5.71×10^{-3}	3.50×10^{-1} 2.22×10^{-2}

Conclusion

Knowledge for Tomorrow

Conclusion

- A new generic SDR platform has been proposed
- Design of a FMECA-based risk assessment approach developed
- Novel radiation characterization on the AD9361 RFIC
- Hybrid design of using COTS and RadHard devices
- System validation at CHARM
- Satisfying cross-section results (no heavy-ion assumed):
 - ~1 self-recover event per day in GEO, ~8.5 days for LEO (worst case)
- Close cross-section saturation for self-recovery SEFIs for CHARM and KVI

Generic Software-Defined Radio

Thank you for your attention

German Aerospace Center (DLR)

Institute of Space Systems | Avionics Systems Department | Robert-Hooke-Str. 7 | 28359 Bremen

Jan Budroweit Phone: +49 421 24420-1297 | Telefax +49 421 24420-1120 | jan.budroweit@dlr.de www.dlr.de/irs

Knowledge for Tomorrow