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Presentation outline

Introduction: My work in the context of RADSAGA

Part 1: State of the art
● Wide bandgap materials and their applications
● Radiation environments and effects
● Test standards

Part 2: Experimental results and analysis
● Methodology and experimental details
● Radiation and aging experiments

Conclusions
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Thesis goals in the context of RADSAGA

RADSAGA (RADiation and Reliability 
Challenges for Electronics used in
Space,
Aviation,
Ground and
Accelerators)

● Reliability is essential for safe 
operation within all four application
areas.

● Power devices are the key
components for any electronics
systems and failure or degradation
of power device affects the overall
system reliability.
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In the frame of RADSAGA, my thesis 
work focuses on the following:

– Radiation sensitivity assessment of 
emerging wide bandgap power 
devices

– Mutual effects of aging and radiation
● The effect of radiation induced 

degradation on the lifetime of 
the device

● The effect of aging on 
radiation sensitivity

– Development of the test methodology 
for assessing those effects
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Part I: State of the art
From silicon to wide bandgap materials



Critical parameters: Power electronics
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● The characteristics and limitations of 
power electronics devices are a key 
element in the power electronics 
system design

● In order to maximize the efficiency, the 
power loss in the semiconductor 
devices should be minimized

● Silicon has been the dominant 
semiconductor material in power 
electronics  since the beginning

Fig. 1. Figure of merit of material parameters of Si, SiC and GaN. 
Millan et al. 2015

Silicon has reached its limits regarding critical electric field, operating 
temperature and switching frequency



Main known stressors for WBG based power 
devices
Stressors

● Operation (electrical)
● Radiation
● Temperature
● Mechanical

Failure mechanisms and related failure modes
● Overload – Open circuit
● SEEs - Short-circuit
● Thermal effects
● Wear-out
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Radiation Aging



Test methodologies for radiation sensitivity 
assessment of power electronics
Standard for assessing the power MOSFET radiation sensitivity in atmospheric environment 
does not exist
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In this work, versatile methodology for reliability parameter and failure rate 
calculation for power devices under neutron environment is proposed.

Document reference Applicable to Shortcomings

MIL-STD-750E Method 1080 Heavy ion testing for space 
applications

● Not applicable for atmospheric neutron testing

JESD89A Atmospheric neutron testing for 
microelectronics

● No guideline for power devices

JEP151 Atmospheric neutron testing for 
power devices

● Not a standard
● Does not take into account coupled aging and 

radiation effects
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Part I: State of the art
Radiation effects on power electronics



Radiation environments

17/5/2021, RADSAGA Final Conference – Kimmo Niskanen 9

Fig. 3. Atmospheric secondary particle shower due to primary 
cosmic particle interaction.

Akturk et al. TNS, 2017 

Space 
radiation 

environment

Atmospheric 
radiation 

environment

Avionic 
applications

Space 
applications

Protons, electrons, 
heavy ions, γ-rays, 
X-rays

Neutrons, 
protons

Ground 
level 
applications

x300 neutron 
flux at avionic 
altitudes 



Single Event Effects: Definitions
Destructive damage caused to a device by a single energetic particle

JEDEC definitions:
● Single event burnout (SEB):

An event in which a single energetic-particle strike induces a localized high-
current state in a device that results in catastrophic failure

● Single event gate rupture (SEGR):
An event in which a single energetic-particle strike results in a breakdown 
and subsequent conducting path through the gate oxide of a MOSFET
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Fig. 4. Cross section representation of 
vertical MOSFET

From the occurrence point of view, SEB is the main concern to be considered



SEB mechanism in vertical power MOSFETs

Single event burnout is presented 
in following steps:

● Impacting energized particle 
deposits energy in the device 
volume. It results in charge 
generation (ionization) in the 
material along the track
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SEB mechanism in vertical power MOSFETs

Single event burnout is presented 
in following steps:

● Under applied electric field, 
electrons and holes are separated 
from each other and such charge 
transport can be observed as 
transient current
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Fig. 6. Cross section representation of vertical MOSFET
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SEB mechanism in vertical power MOSFETs

Single event burnout is presented 
in following steps:

● If carriers reach sufficient energy, 
impact ionization will be initiated

17/5/2021, RADSAGA Final Conference – Kimmo Niskanen 13

+
+

+

+

+

+

-

--

-

-

-

-

-

Fig. 7. Cross section representation of vertical MOSFET

+ +

Charge 
multiplication 
due to impact 
ionization

--

-

- -

-
-

-

+
+

++
+

+

+
+

Impact 
ionization at the 
epi/substrate 
interface



SEB mechanism in vertical power MOSFETs

Single event burnout is presented 
in following steps:

● If the process sustains long 
enough, it result in thermal 
runaway resulting in melting of the 
semiconductor material
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Fig. 8. Cross section representation of vertical MOSFET
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Part II: The experimental
results and analysis
Experimental details and methodology



Experimental study outline

● Experimental setup for SEB testing
● Methodology for reliability assessment
● SiC Power MOSFET reliability under atmospheric environment
● Conclusion
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Radiation environment

Neutron irradiations were performed in ChipIr facility, in 
Rutherford Appleton Laboratory, UK

● Atmospheric-like neutron spectrum
● Acceleration factor 109 compared to neutron flux 

at ground level
● Average flux 5 × 106 n cm-2 at the test position 

(En > 10 MeV)
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Fig. 9. Facility neutron spectrum compared with ground level flux

Due to stochastic nature of neutron-matter interaction, statistical test 
approach is needed



Single event burnout test setup

Test boards were developed allowing to test 32 devices in parallel
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ﾧ

Fig. 10. Schematics of the irradiation test setup

…

Test board

HV SMU 
Drain

PC
SMU 
Gate

Irradiation chamberControl room

Fig. 12. Test board at the irradiation test positionFig. 11. Schematics of the irradiation test board



Plotting of the failure points in Weibull scale

Fig. 13. Total current in the test board

Fit Weibull cumulative 
distribution function (CDF) Extract β and η

Fig. 14. Cumulative proportion of failed devices and fitted CDF

Plot time of each 
current step as 

failure point

The η parameter is related to the 
mean value of the distribution

β = 1 is expected 

Decreasing failure rate with time:  β < 1
Constant failure rate with time:    β = 1
Increasing failure rate with time:    β > 1

Each current step corresponds to a single device failure

Once the cumulative distribution of failed devices is plotted, 
β and η are extracted

F (t)=1−e
−(
t
η)

β



Parameter extraction: Linear regression model
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Plotting of each 
device failure in 
the Weibull plot

Linear fit to the 
dataset

Parameter 
extractionFig. 15. Weibull plot of SEBs

Weibull cumulative 
distribution function (CDF):

Linearization of CDF:

Accuracy of this method will increase with fraction of failed devices. Domain of interest 
for extracting  and  with this method is when at least 65% of the devices are failed

F (t)=1−e
−(
t
η)

β

kx+c = β ln(t)−β ln (η)

β =
k

ln(10)

η = e
−(
c
β

)



Method for Failure In Time (FIT) calculation
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Reliability of the device for the target application can be expressed with failure rate which unit is Failure In Time (FIT)
• 1 FIT corresponds to one device failure over 109 device hours
• Defined for application environment

Failure rate:   

where  is Mean Time To Failure and 

From the extracted Weibull parameters

Note: when

Fig. 17. Gamma function term as a function of beta

λ=
109

MTTF×AF

AF=
Accelerator flux
Atmospheric flux

MTTF=η×Γ(1+
1
β

)

β=1 , MTTF=η



Failure In Time extraction summary
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Cumulative 
proportion of 
failed devices 
to Weibull plot

Extraction of 
failure times 

from 
irradiation 

experiments

Extraction of
β and η 

through LR or 
MLE

MTTF 
calculation

Calculate Failure In 
Time for specific 

application



Drain-to-source voltage dependence on SEB 
sensitivity and failure in time (FIT)
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VDS (V) βLR βMLE ηLR (cm-2) ηMLE (cm-2)

675 1.52 2.07 2.73 × 1010 2.47 × 1010

800 0.72 0.91 1.17 × 1010 7.83 × 109

900 0.84 1.04 1.43 × 109 1.24 × 109

Table II: Weibull parameters for different irradiation VDS configurations

Fig. 19. Weibull plot of SEBs
Niskanen et al. NSREC2019, San Antonio, TX, USA

Drain-to-source voltage dependence on SEB failure rate  
is studied.

Device under test:
CREE Wolfspeed SiC MOSFET
Part number: C3M0120090D
VDSmax = 900 V
IDSmax = 23 A

Devices were irradiated under atmospheric 
neutron spectrum with three VDS configurations 
during irradiation

Average flux 5 × 106 n cm-2 at the test position 
(En > 10 MeV)

Fig. 18. Device under test



Long term reliability assessment
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Not all the devices exhibited SEB after neutron irradiation. Is the long-term 
reliability affected by the neutron irradiation?

Time Dependent Dielectric Breakdown (TDDB) based on constant voltage stress 
(CVS) is measured after irradiation in order to reveal possible degradation of gate 
oxide due to the neutron-induced non-destructive current transients. 

Fresh oxide
(some defects)

Localized defect 
generation due to 
radiation impact

Conducting path 
between electrodes 
formed during CVS

32 DUTs

Irradiation

QBD 
extraction

16 
DUTs

16 
DUTs

CVS

Fig. 26. CVS circuit

Constant voltage stress:

VDS = 0 V, VGS = 37 V

Devices were stressed until breakdown and charge-to-breakdown (QBD) was extracted

Fig. 25. Phenomenological representation of accumulated defects in the oxide



Long term reliability assessment
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Decreased 
QBD for 
irradiated 
devices

Fig. 28. Weibull plot of charge-to-breakdownFig. 27. Gate current during CVS for one fresh and one irradiated device

Integrate 
current over 

time

After neutron irradiation, unfailed devices exhibit 50 % decrease in charge-to-breakdown



TCAD simulation of gate damage
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Fig. 29. Hole density during the ion interaction
Niskanen et al. IEEE TNS 2021

Fig. 30. Electric field evolution in the oxide during ion interaction for two 
gate voltage configurations

Niskanen et al. IEEE TNS 2021

The hole accumulation under gate region might cause a localized stress in oxide layer. 
Latent defect generation might be enhanced in operation mode.

Weakening of the gate oxide for irradiated devices is simulated with TCAD in 
order to address the physical mechanisms responsible to degradation.

Hole 
accumulation 
below gate 
oxide



Mutual effects towards aging effects on 
radiation sensitivity
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Next step in the study is to show, how aging affects the radiation sensitivity of the 
device

Neutron irradiation

TDDB

Direct failure during irradiation (SEB)

Impact of irradiation on lifetime of 
unfailed devices

Aging Neutron Irradiation
Impact of aging on neutron irradiation
sensitivity 

So far, I have studied radiation effects from risk of failure and long term reliability point of view



The effect of aging on SEB sensitivity of SiC 
MOSFET
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30 
DUTs

CCS

Reliability 
analysis

Irradiation

15 DUTs

15 DUTs

Irradiation

Constant current stress (CCS) applied on the gate terminal while VDS = 0 V in order 
to induce defect clusters in the gate oxide layer and oxide/SiC interface before the 
irradiation experiment

In this study, the impact of preliminary electrical stress on neutron induced SEB sensitivity is 
evaluated. The SEB failure induced by atmospheric neutrons has been compared between fresh 
irradiated and preliminary stressed devices.

Fig. 31. Constant current stress waveform
Niskanen et al. IEEE TNS 2020

Preliminary 
aging



The effect of aging on SEB sensitivity of SiC 
MOSFET
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Devices were irradiated at VDS = 675 V 
(75 % of the VDSmax) while VGS = 0 V

15 devices in each configuration were 
irradiated.

Stopping fluence: 2 × 1010 n cm-2

Fig. 32. Cumulative proportion of SEB failures for fresh 
and preliminary stressed devices
Niskanen et al. IEEE TNS 2020

2-parameter Weibull fit for stressed devices cannot be performed since the 
behaviour is not linear.

Applying the Weibull analysis for both failure sets



Methodology synthesis
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Methodology synthesis
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Methodology synthesis
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Methodology synthesis
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Conclusions



Conclusions
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• A methodology for SiC power MOSFET reliability testing under atmospheric neutron 
spectrum is proposed based on the Weibull statistics

• A method for long term reliability assessment was reported

• Radiation sensitivity of aged devices was evaluated and methodology was presented

• Coupled aging and radiation effects have been observed for the first time and 
experimental results were supported by TCAD simulations
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Thank you for your attention
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