

Layout Effects on CMOS Photosensitive Devices

17-19 May, 2021 RADSAGA Final Conference and Industrial event

Rico Jossel Maestro, RADSAGA ESR 11, Work Package #2

RADiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators (RADSAGA) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement 721624. RADSAGA began in Mars 2017 and will run for 5 years.

- □ Introduction
- □ Test Chip
- Initial Measurement Results
- Conclusion and Future Work

□ Introduction

- □ Test Chip
- Initial Measurement Results
- Conclusion and Future Work

Photosensitive device for charge collection
 Transistors for operation and control

Radiation Effects in Pixels

Total Ionizing Dose Increase in dark current Change in transistor threshold voltage Transistor leakage paths **Displacement Damage** Increase in dark current Decrease in quantum efficiency Single-Event Effects SFI s

Radiation-Hardening the Pixel

Additional layers to minimize exposure of depletion region to interface states

□ Use of enclosed-layout transistors

□ Use of photogates for the ability to compensate

- □ Introduction
- Test Chip
- Initial Measurement Results
- □ Conclusion and Future

- Conventional, partially-pinned, and gated photodiodes are included
- Placements and sizes of STI are changed
- DRC violations are waived

- Other terminal of the photogate is floating
- Investigate effect of floating node to lag
- Photogates with different threshold voltages are included
- Not ELT

- □ Transistors in pixel are enclosed layout transistor
- For other analog blocks like the column read, S/H, dynamic comparator
 - ELT are also used
 - Guard rings are placed in each group of transistors to minimize possibility of latch-up

- □ Introduction
- □ Test Chip
- Initial Measurement Results
- Conclusion and Future Work

- □ FPGA system and software were developed
- Chip PCB is put inside a box and covered with black cloth to ensure that there will be no light

Electrical and functional tests
 Determine if blocks were working as intended

□ Characterization

- □ Fixed pattern noise
- Temporal noise
- Dark current levels

Electrical and Functional Tests

- □ All blocks are working
- Some pixel types are not working:
 N+/P+ short

17/05/2021, RADSAGA Final Conference - Maestro

Fixed Pattern and Temporal Noise Characterization

- □ VDDRST is set below VDD $V_{th,RST}$ to make sure $V_{FD} = VDDRST$
- For temporal noise, pixel values are sampled 200 times
- For other tests, pixel values are sampled at least 10 times then the results are averaged

- Due to charges that are trapped and released after some time
- Heavily pixel-dependent

17/05/2021, RADSAGA Final Conference - Maestro

- **G** Fixed pattern variation include variations in the path to the output
- Can easily be removed in software

Sampled Voltage

^{17/05/2021,} RADSAGA Final Conference - Maestro

- Output is sampled after reset
- □ After some time, output is sampled again
- Dark current is then computed from the difference in voltage, the time difference and the capacitance

Dark Current Levels: Photodiode

□ Lower dark current were observed for these layouts

Lower dark current when poly layer in this layout is biased with lower voltages

Dark Current Levels: Photogate

- Point A is needed to remove any charges on the left terminal of PG
- Point B is reset value of the FD

RADSAGA

- Point D is where the final value of the pixel is sampled
- □ Integration time is increased

- The lower the threshold voltage, the higher the dark current
- □ Increasing the gate voltage increases the dark current
- Lower dark current for photogate without the left terminal

PG TG	PG TG
STIN+ N+ N+	STI N+ N+
P-Substrate	P-Substrate

17/05/2021, RADSAGA Final Conference - Maestro

- □ Introduction
- □ Test Chip
- Initial Measurement Results
- Conclusion and Future Work

- From initial tests, dark current levels indeed depend on layout of the pixels for both photodiodes and photogates
- Gate structures might offer another degree of control for dark current
- Radiation tests will be done to characterize how the dark current will evolve with increasing dose
- Optical tests will also be done after thinning the Silicon bulk

Thank you for your attention! Questions?

RADiation and Reliability Challenges for Electronics used in Space, Aviation, Ground and Accelerators (RADSAGA) is a project funded by the European Commission under the Horizon2020 Framework Program under the Grant Agreement 721624. RADSAGA began in Mars 2017 and will run for 5 years.