WP04-NA3 Roadmap and pre-design of future irradiation facilities

S.Danzeca (CERN), Roberto Versaci (ELI Beamlines)

RADNEXT Kick Off Meeting – 19-21 May 2021

https://indico.cern.ch/event/983095/

https://indico.cern.ch/event/1029314/

WP04-NA3 Roadmap and pre-design of future irradiation facilities

- In this WP, the objective is to define long-term scientific, technological and industrial needs for upgrades of the current and future irradiation facilities
 - 4 Tasks (Task 4.1 = Management)
 - 3 Beneficiaries

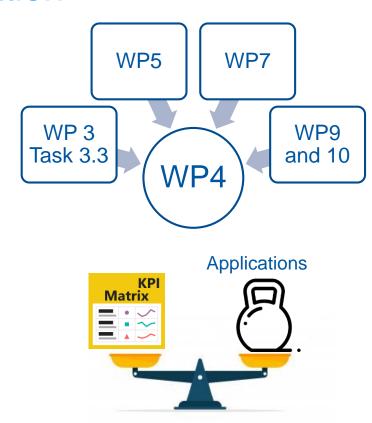
WP04-NA3 Main tasks

- □ Three main technical tasks:
 - 1. Definition of the key performance parameters matrix for the evaluation and identification of the limitations and challenges in long-term
 - 2. Investigate innovative future solutions for current irradiation facilities
 - 3. Design study of new irradiation facilities

Main objective: identify limiting factors of current irradiation facilities and propose solutions for the upgrade of existing facilities and the development of future irradiation ones

WP04-NA3 Task 4.2 : Key performance parameters for current and new facilities

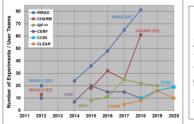
- □ Task Leader: CERN
- □ A fellow will be recruited at CERN

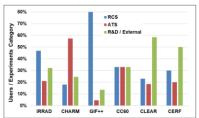

CERN

- → Identify technological limiting factors for available irradiation test facilities based on current industrial and scientific requests;
- → Identify operational issues and challenges for radiation testing coping with different applications and environments;
- → Identify new facilities currently not adapted for radiation testing but that can be used for components qualification and system-level testing;

WP04-NA3 Task 4.2: Identification

- → Strong synergies with all the WPs in order to retrieve facilities information and feedbacks
- → Identify KPIs such as:
 - → Beam/irradiation parameters
 - → Availability
 - → Services
 - → Penetration in matter
 - → Cost per unit
 - → Post irradiation support
- → Identify common applications that can ensure a weighted evaluation of the KPIs
- → Include in the scoring process the facilities that have not been used yet for irradiations highlighting their potential





WP04-NA3 Task 4.2 : CERN facilities

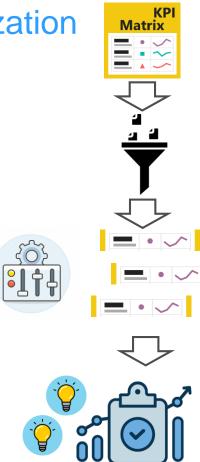
- → Similar exercise has been already carried out with CERN facilities (internal and external)
- → KPIs have been identified for each facilities
- → Applications have been identified among the accelerators and experiments community
- → KPIs matrix with weighted performances have been discussed in details
- → Propositions and suggestions have been provided to the management for future upgrades and future facilities (Task 4.3)
- → https://edms.cern.ch/document/2446501/1

Facilities	Sensors & Detectors	Electronics	System test	Materials
Proton				
IRRAD	55	38.5	29	26.5
PSI	21	39.5	17	0
Neutron				
CALLAB	17	19.5	14	0
JSI	45	31.5	15	34.5
CHIPIR	19	30	20	0
ILL	19	23	15	0
Gamma				
CC60	38	37.5	33	31.5
GIF++	44	13	18	19.5
IONISOS	25	11.5	14	26.5
SCK	22	0	0	0
SANDIA	0	0	0	36
BGS	0	0	0	35
X-Ray				
EP-ESE	31	27.5	0	0
ETH Zurich	28	21.5	0	0
Mixed Field				
CHARM	37	51.5	52	0
Others				
VESPER (electrons)	18	18	15	0
RADEF (electrons)	16	0	0	0
UCL (IONS)	17	26	0	0

WP04-NA3 Task 4.3: Future solutions for current irradiation facilities

Task Leader: CERN, ELI

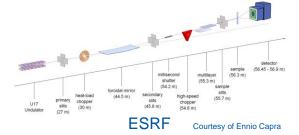
CERN

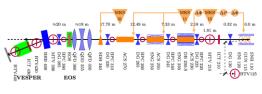

ELI Beamlines

- → Study solutions for increasing the usability of the existing facilities, including virtual access;
- → Propose techniques and methods to overcome technological bottlenecks in the short term;
- → Propose long-term strategic plans for facilities upgrades and user support;
- → Guide research groups and facilities coordinators in their efforts to fulfill the long-term requirements that the applications and the technology impose.

WP04-NA3 Task 4.3: Extraction and parametrization

- → Extract from the Key Performance Indicators found in the Task
 4.2 the ones that can be improved
- → Based on these parameters provide suggestions and ideas on in the short, medium and long term
- → Solutions can be on:
 - → Improving user support: standard mechanical and electrical structure cross-facilities
 - → Beam quality improvements: energy modulation, flux tuning
 - → Radiation environment improvements: shielding, target materials (mixed field facilities), post-irradiation handling
 - → Others i.e virtual access

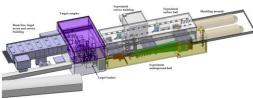

WP04-NA3 Task 4.4 : Design study of new irradiation facilities

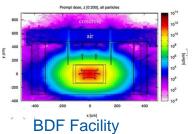


□ Task Leader: CERN, ELI

CERN ELI Beamlines

- → Study design for innovative beam facilities
 - → High-energy heavy ions at CERN (CHIMERA)
 - → Laser Plasma Accelerators
 - → Pulsed X-rays to mimic heavy ion SEE effects
 - → High-energy electron beam at CLEAR
- → Study solutions for future infrastructure:
 - → IFMIF-DONES: International Fusion Materials Irradiation facility
 - → ISIS-II project : Next generation spallation source, successor to ISIS
 - → Beam Dump Facility at CERN


CLEAR/VESPER



WP04-NA3 Task 4.4 : Design study of new irradiation facilities

- → ISIS-II
 - → Next generation spallation source, successor to ISIS, to be developed in the next decades to be ready for construction after 2030.
 - → It is not an upgrade of ISIS, which will operate for many years to come, but a new facility in the UK, complementary to European Spallation Source.
- → Beam Dump Facility
 - → Foreseen to be located at the North Area of the SPS
 - envisaged to be for the Search for Hidden Particle (SHiP) experiment
 - → Beam momentum of 400 GeV/c
 - → Beam intensity on the target 4.0 x 10¹³ per cycle of 7 seconds

WP04-NA3 Task 4.4: Design study of new irradiation

facilities

- → Laser-based facility in their infancy for radiation production
- Increased interest because of progress in operational parameters
 - → Worldwide: 43 lasers ≥ 1PW; 8 lasers ≥ 10PW
 - → Three laser facilities in RADNEXT
- → Pros & Cons of radiation testing at laser facilities
 - → Plus: very short pulse, very high dose rate, very easy passive measurements
 - → Minus: repeatability, beam quality
- → Need to train laser scientists on radiation damage
- → Need to devise working protocol for laser facilities

Thanks for your attention!

Image Source: CERN

