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Goal

• Use realistic CMS data files

• Measure thread scaling of writing those files
• Write ROOT format
• Write a simple format

2



10/21/2020 C Jones I Output Performance Testing

CMS Data Formats

• CMS Uses several different ROOT based data formats
• Formats differ by exactly what data products are stored

• RECO
• ~ 3MB/event
• ~ 20% of data as it is taken is written to this format
• most files not kept beyond 90 days

• AOD
• ~500 kB/event
• ‘Big’ analysis format
• data and MC are stored in this format

• miniAOD
• ~ 50 kB/event
• ‘medium’ analysis format
• Used for most analysis
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Measurements

• Machine Used
• AMD Opteron(tm) Processor 6128
• 4 CPUs with 8 Cores per CPU

• Testing procedure
• Number of Events processed in a job is directly proportionally to number threads used
• Exception is when jobs stop scaling with threads, then fix number events processed
• Unless otherwise noted, number of concurrent Events == number of threads
• Machine was always fully loaded
• #threads per job * # concurrently running jobs == 32

• Read first 10 events from the file and replay objects over and over
• No dependency on storage device read speeds on measurements

• No file actually written
• Output goes to /dev/null
• Avoids dependency on speed of storage device in measurement
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RECO Format
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RECO: Data Product Reading Only

• Upper limit on processing for the testing framework using this file

• No scaling

Standard CMS processing 
rate is 0.1 Ev/sec/thread
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RECO: Use ROOT Serialization

• Serialize the data products read from the file
• Each data product can be serialized simultaneously
• Events are processed simultaneously

• Good scaling up to 8 threads
• breaks down around 16 threads
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RECO: Use ROOT Serialization (continued)

• ~50% of serialization time comes from 4 data products
• Thread scaling difficulties comes from 1 of the data products not scaling well
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Summary of ROOT File Writing

• ROOT TFile API requires only 1 thread to call at a time
• NOTE: can call methods of different TFiles concurrently

• ROOT can internally use threads to work on files
• Called Implicit Multi-Threading or IMT

• Writing a ROOT file can compress different data product buffers concurrently
• serialization of the C++ objects is still done sequentially
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RECO: Write ROOT File Fast

• Write to /dev/null
• Disable use of compression

• No scaling
• This was expected as no IMT used

10

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

1

2

3

4

5

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

RECO: Write ROOT File ‘Realistic’

• Write to /dev/null
• Use LZ4 compression
• Use IMT

• See modest scaling
• not enough parallelization 

opportunities in data product 
compression 
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A Simple Data Format

• Repurposed a file data format used by CLEO collaboration

• Design
• Each Event is written to the file atomically
• no coupling across Events
• Events on disk are just a collection of serialized data products
• no coupling across data products

• Implementation
• Data products can be concurrently serialized using ROOT serialization
• Once all data products for an event are serialized the Event is compressed
• Different Events can be concurrently compressed
• Use LZ4 compression algorithm
• Compressed Event is written sequentially to disk
• No attempt to concurrently write different Events
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RECO: Simple Data Format

• Very fast with good thread scaling
• 2.4x faster than ROOT format at 1 thread
• 40x faster than ROOT format at 32 threads
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RECO: Simple Data Format (continued)

• Loss of scaling primarily due to serialization not scaling perfectly
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AOD Format
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AOD: Use ROOT Serialization

• Serialize the data products read from the file
• Each data product can be serialized simultaneously
• Events are processed simultaneously

• Very good scaling
• breaks down around 24 threads
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AOD: Use ROOT Serialization (continued)

• ~60% of serialization time comes from 3 data products
• Very good scaling until 32 threads where 1 data product stops scaling
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AOD: Write ROOT File Fast

• Write to /dev/null
• Disable use of compression

• No scaling
• This was expected as no IMT used
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AOD: Write ROOT File ‘Realistic’

• Write to /dev/null
• Use LZ4 compression
• Use IMT

• Very limited scaling
• Time in compression is minimal
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AOD: Simple Data Format

• Very fast with very good thread scaling
• 2.6x faster than ROOT format at 1 thread
• 58x faster than ROOT format at 32 threads
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AOD: Simple Data Format (continued)

• Good scaling due to serialization scaling well up to 16 threads
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MiniAOD Format
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MiniAOD: Use ROOT Serialization

• Serialize the data products read from the file
• Each data product can be serialized simultaneously
• Events are processed simultaneously

• Limited scaling
• breaks down around 8 threads
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MiniAOD: Use ROOT Serialization (continued)

• ~70% of serialization time comes from 4 data products
• Thread scaling difficulties comes from 1 of the data products not scaling well
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MiniAOD: Write ROOT File Fast

• Write to /dev/null
• Disable use of compression

• No scaling
• This was expected as no IMT used
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MiniAOD: Write ROOT File ‘Realistic’

• Write to /dev/null
• Use LZ4 compression
• Use IMT

• No scaling
• Time in compression is too little to 

make appreciable difference
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MiniAOD: Simple Data Format

• Very fast with modest thread scaling
• 5x faster than ROOT format at 1 thread
• 45x faster than ROOT format at 32 threads
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MiniAOD: Simple Data Format (continued)

• Loss of scaling due to serialization not scaling perfectly
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Conclusions



10/21/2020 C Jones I Output Performance Testing

ROOT to Simple Format Comparison

• Only looked at throughput comparison

• Other important factors
• Amount of memory used
• simple format is presently using a buffer per data product per Event
• Resulting file size
• simple format compresses Event by Event
• ROOT compresses by data product (ish)
• larger similarities in values allows better compression

• Write performance
• all tests done by writing to /dev/null
• Read performance
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ROOT to Simple Format Comparison (continued)

• Create CMS files with 100 events and converted to ROOT and Simple 
format using the testing framework
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File Event Size in MB
RECO AOD MiniAOD

ROOT 4.490 0.646 0.105
Simple 12.370 2.869 0.494

Size Ratio 2.76 4.44 4.70
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Future Directions

• Write to actual storage
• Need access to a representative node
• Could also do a multi-node scale test to see cross-node effects

• Run tests using Saba’s HDF5 based format
• Can benefit from concurrent data product serialization

• Test with other experiment’s data files
• Best done by an experiment expert

32


