
Dr Christopher Jones
CCE - IOS
21/10/2020

Thread Scaling of Different Output Methods



10/21/2020 C Jones I Output Performance Testing

Goal

• Use realistic CMS data files

• Measure thread scaling of writing those files
• Write ROOT format
• Write a simple format

2



10/21/2020 C Jones I Output Performance Testing

CMS Data Formats

• CMS Uses several different ROOT based data formats
• Formats differ by exactly what data products are stored

• RECO
• ~ 3MB/event
• ~ 20% of data as it is taken is written to this format
• most files not kept beyond 90 days

• AOD
• ~500 kB/event
• ‘Big’ analysis format
• data and MC are stored in this format

• miniAOD
• ~ 50 kB/event
• ‘medium’ analysis format
• Used for most analysis

3



10/21/2020 C Jones I Output Performance Testing

Measurements

• Machine Used
• AMD Opteron(tm) Processor 6128
• 4 CPUs with 8 Cores per CPU

• Testing procedure
• Number of Events processed in a job is directly proportionally to number threads used
• Exception is when jobs stop scaling with threads, then fix number events processed
• Unless otherwise noted, number of concurrent Events == number of threads
• Machine was always fully loaded
• #threads per job * # concurrently running jobs == 32

• Read first 10 events from the file and replay objects over and over
• No dependency on storage device read speeds on measurements

• No file actually written
• Output goes to /dev/null
• Avoids dependency on speed of storage device in measurement

4



10/21/2020 C Jones I Output Performance Testing5

RECO Format



10/21/2020 C Jones I Output Performance Testing

RECO: Data Product Reading Only

• Upper limit on processing for the testing framework using this file

• No scaling

Standard CMS processing 
rate is 0.1 Ev/sec/thread

6

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

960

1920

2880

3840

4800

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

RECO: Use ROOT Serialization

• Serialize the data products read from the file
• Each data product can be serialized simultaneously
• Events are processed simultaneously

• Good scaling up to 8 threads
• breaks down around 16 threads

7

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

28

56

84

112

140

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e 

Ev
en

t T
hr

ou
gh

pu
t

0

8

16

24

32

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

RECO: Use ROOT Serialization (continued)

• ~50% of serialization time comes from 4 data products
• Thread scaling difficulties comes from 1 of the data products not scaling well

8

Re
la

tiv
e 

Se
ria

liz
at

io
n 

Ti
m

e 
pe

r T
hr

ea
d

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Number of Threads/Concurrent Events
0 8 16 24 32

Fr
ac

tio
n 

of
 T

ot
al

 S
er

ia
liz

at
io

n 
TI

m
e

0

0.1

0.2

0.3

0.4

0.5

Number of Thread/Concurrent Events
0 8 16 24 32

Relative TrackingRecHits Relative SiStripClusters
Relative PFBlocks Relative PFCandidates



10/21/2020 C Jones I Output Performance Testing

Summary of ROOT File Writing

• ROOT TFile API requires only 1 thread to call at a time
• NOTE: can call methods of different TFiles concurrently

• ROOT can internally use threads to work on files
• Called Implicit Multi-Threading or IMT

• Writing a ROOT file can compress different data product buffers concurrently
• serialization of the C++ objects is still done sequentially

9



10/21/2020 C Jones I Output Performance Testing

RECO: Write ROOT File Fast

• Write to /dev/null
• Disable use of compression

• No scaling
• This was expected as no IMT used

10

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

1

2

3

4

5

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

RECO: Write ROOT File ‘Realistic’

• Write to /dev/null
• Use LZ4 compression
• Use IMT

• See modest scaling
• not enough parallelization 

opportunities in data product 
compression 

11

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

0.6

1.2

1.8

2.4

3

3.6

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

A Simple Data Format

• Repurposed a file data format used by CLEO collaboration

• Design
• Each Event is written to the file atomically
• no coupling across Events
• Events on disk are just a collection of serialized data products
• no coupling across data products

• Implementation
• Data products can be concurrently serialized using ROOT serialization
• Once all data products for an event are serialized the Event is compressed
• Different Events can be concurrently compressed
• Use LZ4 compression algorithm
• Compressed Event is written sequentially to disk
• No attempt to concurrently write different Events

12



10/21/2020 C Jones I Output Performance Testing

RECO: Simple Data Format

• Very fast with good thread scaling
• 2.4x faster than ROOT format at 1 thread
• 40x faster than ROOT format at 32 threads

13

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

24

48

72

96

120

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e 

Ev
en

t T
hr

ou
gh

pu
t

0

8

16

24

32

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

RECO: Simple Data Format (continued)

• Loss of scaling primarily due to serialization not scaling perfectly

14

Re
la

tiv
e 

Se
ria

liz
at

io
n 

Ti
m

e 
pe

r T
hr

ea
d

0.9

1

1.1

1.2

1.3

1.4

1.5

Number of Threads/Concurrent Events
0 8 16 24 32

Fr
ac

tio
n 

of
 T

ot
al

 S
er

ia
liz

at
io

n 
Ti

m
e

0

0.04

0.08

0.12

0.16

0.2

0.24

Number of Thread/Concurrent Events
0 8 16 24 32

Relative TrackingRecHits Relative SiStripClusters
Relative PFBlocks Relative PFCandidates



10/21/2020 C Jones I Output Performance Testing15

AOD Format



10/21/2020 C Jones I Output Performance Testing

AOD: Use ROOT Serialization

• Serialize the data products read from the file
• Each data product can be serialized simultaneously
• Events are processed simultaneously

• Very good scaling
• breaks down around 24 threads

16

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

140

280

420

560

700

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e 

Ev
en

t T
hr

ou
gh

pu
t 

0

8

16

24

32

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

AOD: Use ROOT Serialization (continued)

• ~60% of serialization time comes from 3 data products
• Very good scaling until 32 threads where 1 data product stops scaling

17

Fr
ac

tio
n 

of
 T

ot
al

 S
er

ia
liz

at
io

n 
TI

m
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Thread/Concurrent Events
0 8 16 24 32

Relative PackedCandidates
Relative HcalDepthEnergyFractions
Relative PackedGenParticles

Re
la

tiv
e 

Se
ria

liz
at

io
n 

Ti
m

e 
pe

r T
hr

ea
d

1

1.1

1.2

1.3

1.4

1.5

1.6

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

AOD: Write ROOT File Fast

• Write to /dev/null
• Disable use of compression

• No scaling
• This was expected as no IMT used

18

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

2

4

6

8

10

12

Number of Threads/Concurrent Events
0 8 16 24 32



10/21/2020 C Jones I Output Performance Testing

AOD: Write ROOT File ‘Realistic’

• Write to /dev/null
• Use LZ4 compression
• Use IMT

• Very limited scaling
• Time in compression is minimal

19

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

2

4

6

8

10

12

Number of Threads/Concurrent Events
0 8 16 24 32



Date C Jones I Output Performance Testing

AOD: Simple Data Format

• Very fast with very good thread scaling
• 2.6x faster than ROOT format at 1 thread
• 58x faster than ROOT format at 32 threads

20

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

120

240

360

480

600

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e 

Ev
en

t T
hr

ou
gh

pu
t

0

8

16

24

32

Number of Threads / Concurrent Events
0 8 16 24 32



Date C Jones I Output Performance Testing

AOD: Simple Data Format (continued)

• Good scaling due to serialization scaling well up to 16 threads

21

Re
la

tiv
e 

Se
ria

liz
at

io
n 

Ti
m

e 
pe

r T
hr

ea
d

1

1.1

1.2

1.3

1.4

1.5

Number of Threads/Concurrent Events
0 8 16 24 32

Fr
ac

tio
n 

of
 T

ot
al

 S
er

ia
liz

at
io

n 
Ti

m
e

0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Thread/Concurrent Events
0 8 16 24 32

Relative TrackingRecHits
Relative SiStripClusters
Relative PFBlocks



Date C Jones I Output Performance Testing22

MiniAOD Format



Date C Jones I Output Performance Testing

MiniAOD: Use ROOT Serialization

• Serialize the data products read from the file
• Each data product can be serialized simultaneously
• Events are processed simultaneously

• Limited scaling
• breaks down around 8 threads

23

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

240

480

720

960

1200

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e 

Ev
en

t T
hr

ou
gh

pu
t

0

8

16

24

32

Number of Threads/Concurrent Events
0 8 16 24 32



Date C Jones I Output Performance Testing

MiniAOD: Use ROOT Serialization (continued)

• ~70% of serialization time comes from 4 data products
• Thread scaling difficulties comes from 1 of the data products not scaling well

24

Re
la

tiv
e 

Se
ria

liz
at

io
n 

Ti
m

e 
pe

r T
hr

ea
d

1

2

3

4

5

Number of Threads/Concurrent Events
0 8 16 24 32

Fr
ac

tio
n 

of
 T

ot
al

 S
er

ia
liz

at
io

n 
Ti

m
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Thread/Concurrent Events
0 8 16 24 32

Relative PackedCandidates
Relative HcalDepthEnergyFractions
Relative PackedGenParticles
Relative Jets



Date C Jones I Output Performance Testing

MiniAOD: Write ROOT File Fast

• Write to /dev/null
• Disable use of compression

• No scaling
• This was expected as no IMT used

25

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

4

8

12

16

20

24

Number of Threads/Concurrent Events
0 8 16 24 32



Date C Jones I Output Performance Testing

MiniAOD: Write ROOT File ‘Realistic’

• Write to /dev/null
• Use LZ4 compression
• Use IMT

• No scaling
• Time in compression is too little to 

make appreciable difference

26

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

4

8

12

16

20

24

Number of Threads/Concurrent Events
0 8 16 24 32



Date C Jones I Output Performance Testing

MiniAOD: Simple Data Format

• Very fast with modest thread scaling
• 5x faster than ROOT format at 1 thread
• 45x faster than ROOT format at 32 threads

27

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

320

640

960

1280

1600

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e 

Ev
en

t T
hr

ou
gh

pu
t

0

8

16

24

32

Number of Threads/Concurrent Events
0 8 16 24 32



Date C Jones I Output Performance Testing

MiniAOD: Simple Data Format (continued)

• Loss of scaling due to serialization not scaling perfectly

28

Re
la

tiv
e 

Se
ria

liz
at

io
n 

Ti
m

e 
pe

r T
hr

ea
d

1

2

3

4

5

Number of Threads/Concurrent Events
0 8 16 24 32

Fr
ac

tio
n 

of
 T

ot
al

 S
er

ia
liz

at
io

n 
Ti

m
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Thread/Concurrent Events
0 8 16 24 32

Relative TrackingRecHits
Relative SiStripClusters
Relative PFBlocks
Relative PFCandidates



10/21/2020 C Jones I Output Performance Testing29

Conclusions



10/21/2020 C Jones I Output Performance Testing

ROOT to Simple Format Comparison

• Only looked at throughput comparison

• Other important factors
• Amount of memory used
• simple format is presently using a buffer per data product per Event
• Resulting file size
• simple format compresses Event by Event
• ROOT compresses by data product (ish)
• larger similarities in values allows better compression

• Write performance
• all tests done by writing to /dev/null
• Read performance

30



10/21/2020 C Jones I Output Performance Testing

ROOT to Simple Format Comparison (continued)

• Create CMS files with 100 events and converted to ROOT and Simple 
format using the testing framework

31

File Event Size in MB
RECO AOD MiniAOD

ROOT 4.490 0.646 0.105
Simple 12.370 2.869 0.494

Size Ratio 2.76 4.44 4.70



10/21/2020 C Jones I Output Performance Testing

Future Directions

• Write to actual storage
• Need access to a representative node
• Could also do a multi-node scale test to see cross-node effects

• Run tests using Saba’s HDF5 based format
• Can benefit from concurrent data product serialization

• Test with other experiment’s data files
• Best done by an experiment expert

32


