

Understanding network traffic via the analysis of data from File Transfer Service

Joanna Waczyńska

Edoardo Martelli

March 24, 2021

Introduction & Technical side

Tool developing = Traffic forecasting

Section 1

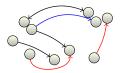
Introduction & Technical side

The goal of the NOTED project

We would like to optimized transfers of LHC data focusing by network problem (like saturation).

How?

• What is generating traffic?


For WLCG, most network traffic is generated by FTS. We therefore analyse the data transfers via FTS in order to estimate when any network optimisation should be applied.

• Do the transfers contain information about the network topology/configuration?

No, but the NOTED uses information from the CRIC database to identify the site network prefixes (IPv4/IPv6) of the storage elements involved and then groups transfers.

Figure: Identification and grouping of relevant transfers.

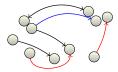
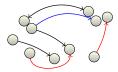

(a) Transfers from FTS between endpoints. Red represents inactive transfers, black active, blue transfer which is now inactive, but it was active.

Figure: Identification and grouping of relevant transfers.

(a) Transfers from FTS between endpoints. Red represents inactive transfers, black active, blue transfer which is now inactive, but it was active.



(b) Filter transfers: inactive transfers are discarded. This operation could be defined by input settings.

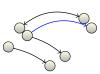


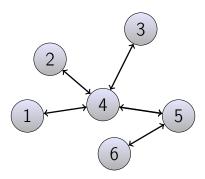
Figure: Identification and grouping of relevant transfers.

(a) Transfers from FTS between endpoints. Red represents inactive transfers, black active, blue transfer which is now inactive, but it was active.

(b) Filter transfers: inactive transfers are discarded. This operation could be defined by input settings.

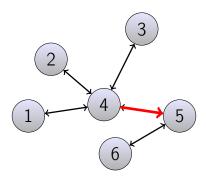
(c) Translate FTS endpoints to unique sites using CRIC, then transfers are grouped using {source,destination} key.

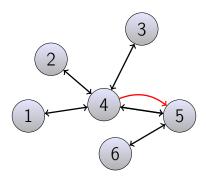
How?

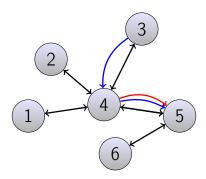

• Do we have enough knowledge about transfers to know which links will be used?

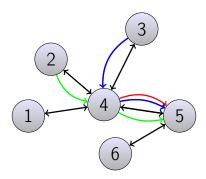
How?

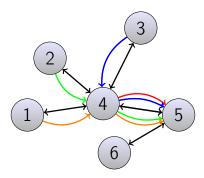
 Do we have enough knowledge about transfers to know which links will be used? No. Why?









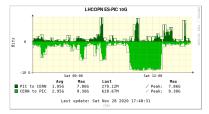


The aggregation stage is a key element of the making decision process as it enables us to combine the impact of potentially independent FTS decisions to give information about the impact on one or more network path segments. We can define our own controller.

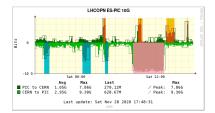
Controller configuration

We can define our own controller:

- obligatory
 - what transfers we should consider? For example: CERN -> PIC, or {CERN & TRIUMF-SFU } ->PIC
 - (future optional) define limits: for example focus only for transfers more then 10TB.
- optional:
 - contact information send information email about decisions
 - postpone decision about removing path when main transfers are finished
 - postpone decision about removing path when FTS reduced throughput, and transfers do not generate enough traffic to saturate link, but transfers have not finished yet
 - corresponding controllers

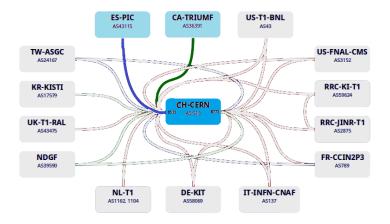

Section 2

Effects



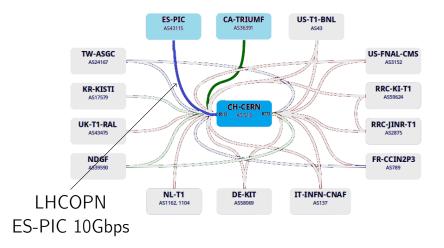
Detection

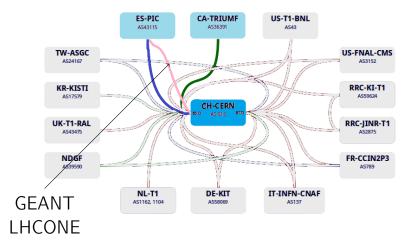
(a) Utilization of the LHCOPN 10Gbps link CERN-PIC on 27/28-11-2020. FTS was the main traffic source.



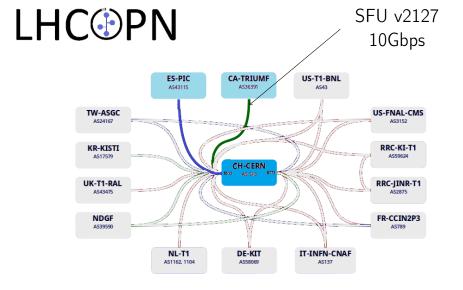
(b) Large transfers detected by the NOTED.

Figure: Juxtaposition of two graphs: from the network monitoring website showing the traffic observed between PIC and CERN and the period when NOTED requested and removed network re-configurations.

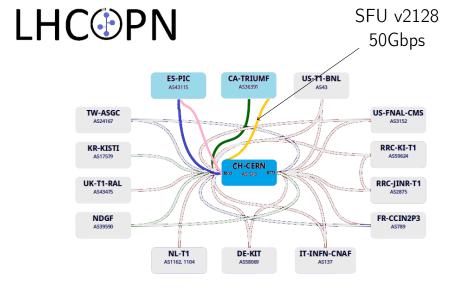

LHC PN


March 24, 202

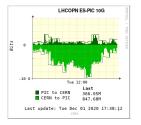
LHC PN



LHC PN



March 24, 2023


March 24, 2021

Test with PIC (balancing traffic)

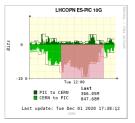
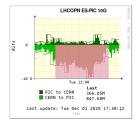
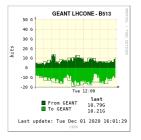

		rate (last						
Timestamp	Decision	Running	Queue	1min)	Throughput	EMA	Diff	Explanation
2020-12- 01T09:27:38Z	300	192	2947 Z	100.00%	689.37 MiB/s	173.34 MiB/s	θ	Range fixed
2020-12- 01T09:21:15Z	300	194	2020	57.00%	440.40 MiB/s	116.00 MiB/s	θ	Range fixed
2020-12- 01T09:15:34Z	300	195	2896 bulk	68.00%	228.99 MiB/s	79.96 MiB/s	θ	Range fixed
2020-12- 01T09:09:51Z	300	17	26	81.00%	133.48 MiB/s	63.40 MiB/s	θ	Range fixed

Figure: Report between two endpoints. New bulk (our test transfer) started at 9:15 (UTC). Test transfer contained 3060 files (avg file size >6GB); totalling around 145 TB.



(a) Observation of traffic passing through the 10Gbps path from 01-12-2020. Multiple overlapping transfers can be observed.


(b) This NI controller focused on transfers from CERN. It detected our test transfer and recommended network optimiisation only for that.

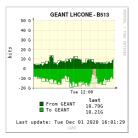

(c) The second NI controller detected and aggregated, all FTS transfers transiting CERN to reach PIC, including those generated by other Tier1s. Network optimisation was thus recommended for a longer period.

Figure: Operation of two NI controllers. The red colouring shows increased traffic due to transfers from FTS.

(a) Observation of traffic passing through the added LHCONE_GEANT path from 01-12-2020. Link GEANT was added around 10:15 and in result traffic was balanced.

(b) The yellow area presents the period when LHCONE_GEANT path wasn't used to load-balance the traffic between CERN and PIC. The Network traffic decrease in the LHCONE_GEANT path is visible. (c) The yellow area presents the period when the LHCONE_GEANT path wasn't used to split traffic between CERN and PIC. Network traffic increased in the LHCONE_ES_PIC path.

LHCOPN ES-PIC 10G

Tue 12:00

Last update: Tue Dec 01 2020 17:38:12

PIC to CERN

CERN to PIC

Last

866 05M

847.68

Sits

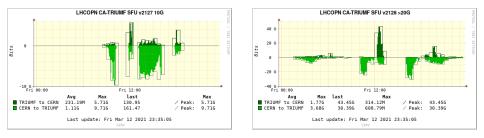
-10 G

Figure: Impact of removing the added path on the network traffic of the observed links.

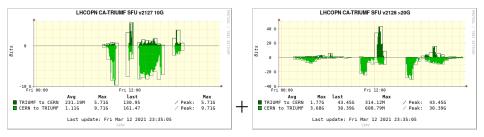
Test with TRIUMF-SFU Tier1

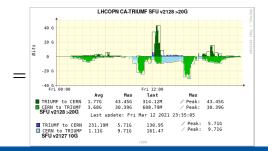
Scenario: site connected with a direct low speed link (VLAN 2127, 10Gbps) with possibility of requesting a larger bandwidth dynamic circuit (VLAN 2128, >50Gbps).

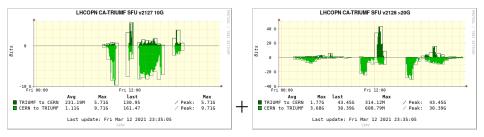
Tried to use a dynamic circuit provisioned by AutoGOLE, but a firewall issue prevented the reservation to work. We will be very happy to continue the cooperation.

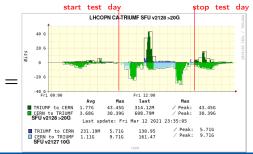

Test with TRIUMF-SFU 12-03-2021 (forwarding traffic)

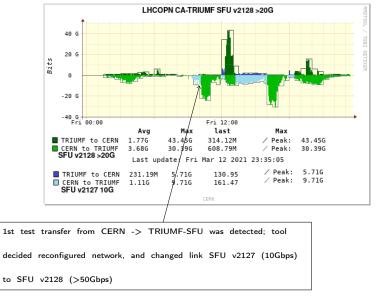
3 test transfers:

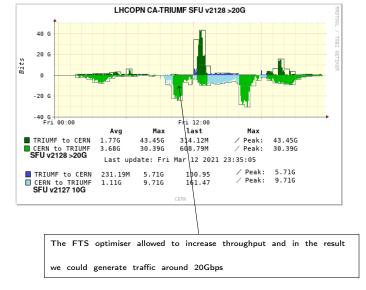

- CERN -> TRIUMF-SFU
- TRIUMF-SFU -> CERN
- CERN -> TRIUMF-SFU

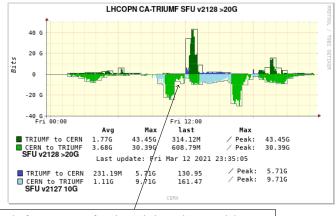

LHCOPN v2127 10Gbps was default link since 8:30 to 18:30.

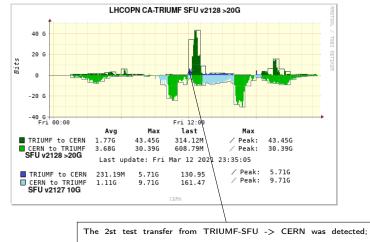





March 24, 2021



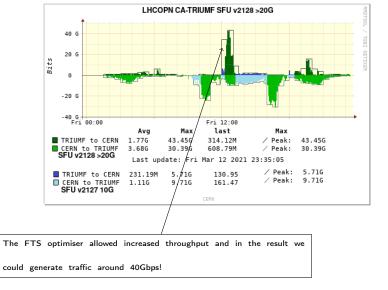

March 24, 2021



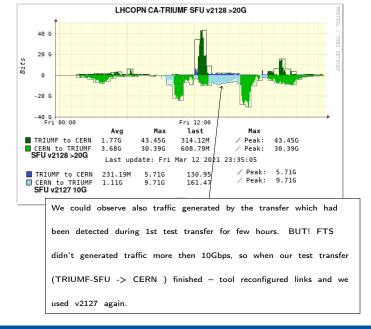
At the end of our test transfer, the tool detected a second huge transfer, so the reconfiguration decision was postponed for a certain amount of time. After couple of minutes the v2128 link was changed to the v2127

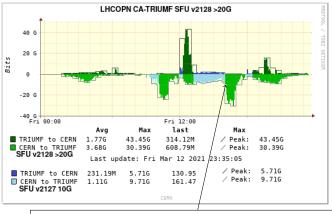
March 24, 2021

NOTED



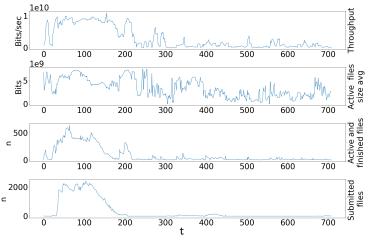
tool decided reconfigured network, and changed link SFU v2127


(10Gbps) to SFU v2128 (>50Gbps)

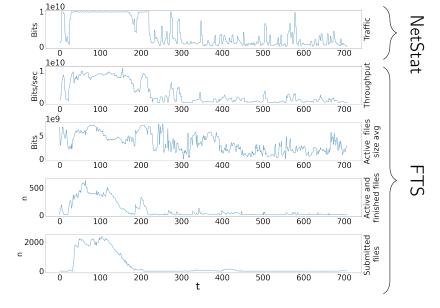


Last 3rd test transfer from CERN -> TRIUMF-SFU was detected; link was changed into v2128; FTS optimizer allowed send transfer faster and we could observed traffic around 30Gbps and after transfer finished tool returned v2127.

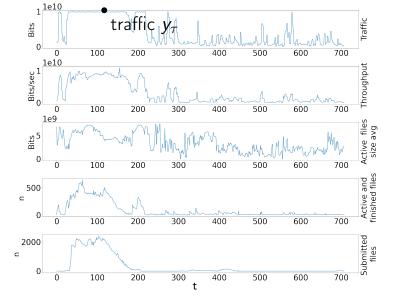
March 24, 2021


Section 3

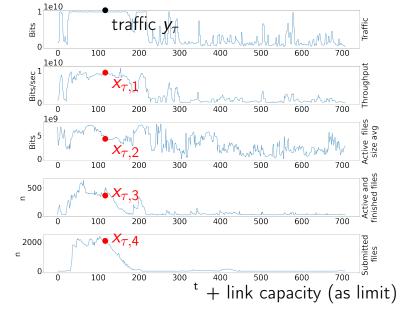
Tool developing = Traffic forecasting

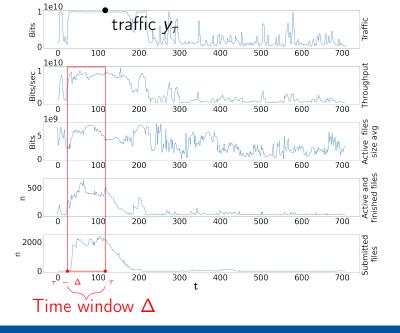

March 24, 2021

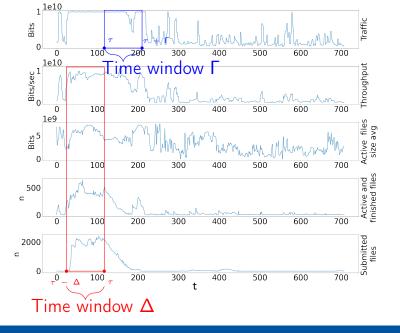
NOTED



*Figure presents data used to as test dataset during modeling






March 24, 2021

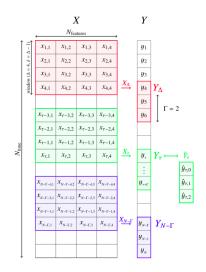
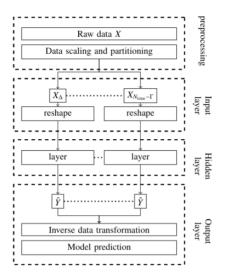
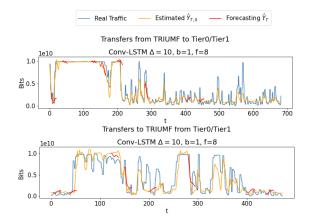



Figure: Schema input data set X, and dependent variables Y


additional pre-processing steps and calculate the throughput exponential moving average over the last 15 minutes, and estimated size values

For the Conv-LSTM model we consider

March 24, 2021

NOTED

Figure: 1. We trained model to predict traffic based on information about transfers from FTS (from TRIUMF-SFU to Tier0/Tier1). 2. Pictures present results on two data sets: from TRIUMF-SFU to Tier0/Tier1 and from Tier0/Tier1 to TRIUMF-SFU. Forecasting is based on aggregated information about transfers from last 20 minutes ($\Delta = 10$); b (batches); f(filters). Forecasting \hat{Y}_{Γ} is predicted Γ future values for chosen *t*. Here $\Gamma = 15$ (30 min).

Section 4

• We can understand network traffic via the analysis of data from FTS (!)

- We can understand network traffic via the analysis of data from FTS (!)
- We can classify transfers and display those that will generate /are generating large network traffic

- We can understand network traffic via the analysis of data from FTS (!)
- We can classify transfers and display those that will generate /are generating large network traffic
- grouping endpoints by sites (prefixes), aggregating sites according to the controller configurations allows for fully conscious automation of decision-making regarding network reconfiguration.

- We can understand network traffic via the analysis of data from FTS (!)
- We can classify transfers and display those that will generate /are generating large network traffic
- grouping endpoints by sites (prefixes), aggregating sites according to the controller configurations allows for fully conscious automation of decision-making regarding network reconfiguration.
- using Conv-LSTM model we are able to forecasting traffic regardless of the transfer behavior based on short history (time window).

- We can understand network traffic via the analysis of data from FTS (!)
- We can classify transfers and display those that will generate /are generating large network traffic
- grouping endpoints by sites (prefixes), aggregating sites according to the controller configurations allows for fully conscious automation of decision-making regarding network reconfiguration.
- using Conv-LSTM model we are able to forecasting traffic regardless of the transfer behavior based on short history (time window).

Thank you for your attention!

Contact:

Joanna Waczyńska joanna.waczynska@cern.ch joanna.waczynska@gmail.com IT-CS-CE

> Edoardo Martelli edoardo.martelli@cern.ch IT-CS-CE

Sofia Vallecorsa Sofia.Vallecorsa@cern.ch IT-DI-OPL

Edward Karavakis edward.Karavakis@cern.ch IT-ST-PDS

home.cern

supplement

Why NOTED?

LHC OPN

Figure: LHCOPN (Large Hadron Collider Optical Private Network) topology

LHCOPN CA-TRIUMF SFU v2127 Bits Fri 00:00 Avg Max last TRIUME to CERN 3.446 9,996 / Peak: 9,996 CERN to TRIUME 2 786 9.936 279 90M / Peak Last update: Fri Dec 18 2020 09:17:01

Figure: Network traffic observed on the LHCOPN path between CERN and TRIUMF. Link saturation occurs in both directions.

March 24, 2021

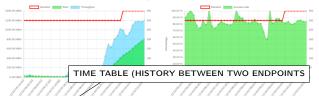
Solution - how avoid saturation

- Add extra path/link to balancing traffic.
- Reconfigure network, and in result move all traffic from one link to 2nd link.

 Automatically decides when the link will be saturated for a long period of time. Manually modify the configuration of network devices

 Automatically decides when the link will be saturated for a long period of time, and automatically modify the configuration of network devices (SDNC).

FTS details - how transfer report look like



First Previous 1 Next Last

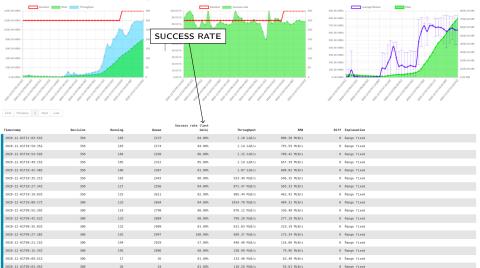
Timestamp	Decision	Running	Queue	uccess rate (last lmin)	Throughput	EMA	Diff	Explanation
2020-12-01T11:03:54Z	350	183	2137	84.00%	1.18 GiB/s	800.38 MiB/s	0	Range fixed
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 GiB/s	755.59 Mi8/s	0	Range fixed
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 GiB/s	709.42 Mi8/s	0	Range fixed
2020-12-01T10:49:15Z	350	185	2312	85.00%	1.14 G18/s	657.39 Mi8/s	0	Range fixed
2020-12-01T10:42:48Z	350	186	2367	81.00%	1.07 G18/s	600.82 M18/s	0	Range fixed
2020-12-01T10:35:21Z	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0	Range fixed
2020-12-01T10:27:34Z	350	127	2556	84.00%	871.47 MiB/s	503.33 M18/s	θ	Range fixed
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M18/s	462.42 M1B/s	θ	Range fixed
2020-12-01T10:08:17Z	300	133	2694	84.00%	1014.78 MiB/s	404.31 MiB/s	θ	Range fixed
2020-12-01T09:55:39Z	300	118	2798	88.00%	870.12 MiB/s	336.48 MiB/s	θ	Range fixed
2020-12-01T09:42:52Z	300	133	2884	88.66%	799.20 MiB/s	277.19 MiB/s	0	Range fixed
2020-12-01T09:35:03Z	300	132	2969	81.00%	631.83 MiB/s	219.19 MiB/s	0	Range fixed
2020-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	0	Range fixed
2020-12-01T09:21:15Z	300	194	2929	57.00%	440.40 MiB/s	116.00 MiB/s	0	Range fixed
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 Mi8/s	79.96 Mi8/s	0	Range fixed
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 M18/s	63.40 M18/s	0	Range fixed
2020-12-01T09:03:45Z	300	26	24	81.00%	110.26 M18/s	55.61 MiB/s	0	Range fixed

st	Previous	1	Next Last	
		/		

Timestamp K	Decision	Running	Quese	uccess rate (last lmin)	Throughput	EMA	Diff Explanation	
2020-12-01T11:03:54Z	350	183	2137	84.66%	1.18 GiB/s	800.38 MiB/s	0 Range fixed	
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 GiB/s	755.59 MiB/s	0 Range fixed	
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 Gi8/s	709.42 Mi8/s	0 Range fixed	
2020-12-01T10:49:15Z	350	185	2312	85.00%	1.14 G18/s	657.39 MiB/s	0 Range fixed	
2020-12-01T10:42:48Z	350	186	2367	81.00%	1.07 G18/s	600.82 M18/s	0 Range fixed	
2020-12-01T10:35:21Z	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0 Range fixed	
2020-12-01T10:27:34Z	350	127	2556	84.00%	871.47 MiB/s	503.33 MiB/s	0 Range fixed	
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M18/s	462.42 M1B/s	0 Range fixed	
2020-12-01T10:08:17Z	300	133	2694	84.00%	1014.78 MiB/s	404.31 MiB/s	0 Range fixed	
2020-12-01T09:55:39Z	300	118	2798	88.00%	870.12 MiB/s	336.48 MiB/s	0 Range fixed	
2020-12-01T09:42:52Z	300	133	2884	88.00%	799.20 MiB/s	277.19 MiB/s	0 Range fixed	
2020-12-01T09:35:03Z	300	132	2989	81.00%	631.83 MiB/s	219.19 MiB/s	0 Range fixed	
2020-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	0 Range fixed	
2020-12-01T09:21:15Z	300	194	2929	57.00%	440.40 MiB/s	116.00 MiB/s	0 Range fixed	
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 Mi8/s	79.96 Mi8/s	0 Range fixed	
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 Mi8/s	63.40 MiB/s	0 Range fixed	
2020-12-01T09:03:45Z	300	26	24	81.00%	110.26 MiB/s	55.61 MiB/s	0 Range fixed	

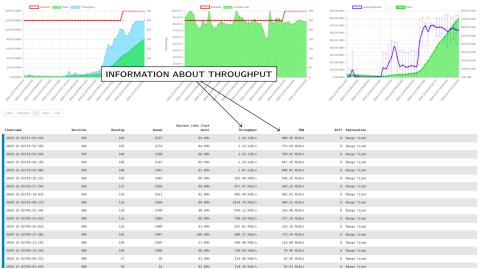
First Previous 1 Next Last

Timestamp	Decision	Running	Queue	Success rate (last Imin)	Throughout	EMA		xplanation
							DITT E	spianation
2020-12-01T11:03:54Z	350	183	2137	84.00%	1.18 GiB/s	800.38 MiB/s	0 R/	ange fixed
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 GiB/s	755.59 MiB/s	0 R	ange fixed
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 Gi8/s	709.42 Mi8/s	0 R	ange fixed
2020-12-01T10:49:15Z	350	105	2312	85.00%	1.14 G18/s	657.39 Mi8/s	0 R	ange fixed
2020-12-01T10:42:48Z	350	186	2367	81.00%	1.07 G18/s	600.82 M18/s	0 R	ange fixed
2020-12-01T10:35:21Z	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0 R:	ange fixed
2020-12-01T10:27:34Z	350	127	2556	84.00%	871.47 MiB/s	503.33 M18/s	0 R:	ange fixed
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M1B/s	462.42 M1B/s	0 R:	ange fixed
2020-12-01T10:08:17Z	300	133	2694	84.66%	1014.78 MiB/s	404.31 MiB/s	0 R:	ange fixed
2020-12-01T09:55:39Z	300	118	2798	88.66%	870.12 MiB/s	336.48 MiB/s	0 R.	ange fixed
2020-12-01T09:42:52Z	300	133	2884	88.66%	799.20 MiB/s	277.19 MiB/s	0 R.	ange fixed
2020-12-01T09:35:03Z	300	132	2989	81.00%	631.83 MiB/s	219.19 MiB/s	0 R.	ange fixed
2020-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	8 R	ange fixed
2020-12-01T09:21:15Z	300	194	2929	57.00%	440.40 MiB/s	116.00 MiB/s	0 R	ange fixed
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 MiB/s	79.96 Mi8/s	0 R	ange fixed
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 Mi8/s	63.40 M18/s	0 R	ange fixed
2020-12-01T09:03:45Z	300	26	24	81.00%	110.26 M10/s	55.61 M18/s	0 R	ange fixed



First Previous 1 Next Last

				ccess rate (last				
Timestamp	Decision	Running	Queue 🖌	lmin)	Throughput	EMA	Diff Explanation	
2020-12-01T11:03:54Z	350	183	2137	84.00%	1.18 GiB/s	800.38 MiB/s	0 Range fixed	
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 GiB/s	755.59 MiB/s	0 Range fixed	
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 G18/s	709.42 Mi8/s	0 Range fixed	
2020-12-01T10:49:15Z	350	185	2312	85.00%	1.14 G18/s	657.39 MiB/s	0 Range fixed	
2020-12-01T10:42:48Z	350	186	2367	81.00%	1.07 G18/s	600.82 M18/s	0 Range fixed	
2020-12-01710:35:212	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0 Range fixed	
2020-12-01T10:27:34Z	350	127	2556	84.00%	871.47 M1B/s	503.33 M18/s	0 Range fixed	
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M18/s	462.42 M1B/s	0 Range fixed	
2020-12-01T10:08:17Z	300	133	2694	84.00%	1014.78 MiB/s	404.31 MiB/s	0 Range fixed	
2020-12-01T09:55:39Z	300	118	2798	88.00%	870.12 MiB/s	336.48 MiB/s	0 Range fixed	
2020-12-01T09:42:52Z	300	133	2884	88.00%	799.20 MiB/s	277.19 MiB/s	0 Range fixed	
2020-12-01T09:35:03Z	300	132	2989	81.00%	631.83 MiB/s	219.19 MiB/s	0 Range fixed	
2020-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	0 Range fixed	
2020-12-01709:21:152	300	194	2929	57.00%	440.40 MiB/s	116.00 MiB/s	0 Range fixed	
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 MiB/s	79.96 MiB/s	0 Range fixed	
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 M18/s	63.40 M18/s	0 Range fixed	
2020-12-01T09:03:45Z	300	26	24	81.00%	110.26 M18/s	55.61 M18/s	0 Range fixed	



March 24, 2021

NOTED

First Previous 1 Next Last

Timestamp	Decision	Running	Queue	Success rate (last lmin)	Throughput	EMA	Diff	Explanation	
2020-12-01T11:03:54Z	350	183	2137	84.00%	1.18 Gi8/s	800.38 MiB/s	0	Range fixed	
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 Gi8/s	755.59 Mi8/s	0	Range fixed	
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 Gi8/s	709.42 Mi8/s	0	Range fixed	
2020-12-01T10:49:15Z	350	185	2312	85.00%	1.14 G18/s	657.39 Mi8/s	0	Range fixed	
2020-12-01T10:42:48Z	350	185	2367	81.00%	1.07 G18/s	600.82 M18/s	0	Range fixed	
2020-12-01T10:35:21Z	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0	Range fixed	
2020-12-01T10:27:34Z	350	127	2556	84.66%	871.47 MiB/s	503.33 M18/s	0	Range fixed	
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M1B/s	462.42 M1B/s	θ	Range fixed	
2020-12-01T10:08:17Z	300	133	2694	84.66%	1014.78 MiB/s	404.31 MiB/s	θ	Range fixed	
2020-12-01T09:55:39Z	300	118	2798	88.66%	870.12 MiB/s	336.48 MiB/s	0	Range fixed	
2020-12-01T09:42:52Z	36		2884	88.66%	799.20 MiB/s	277.19 MiB/s	0	Range fixed	
2020-12-01T09:35:03Z	38 NE	W BULK	2969	81.60%	631.83 MiB/s	219.19 MiB/s	0	Range fixed	
2028-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	0	Range fixed	
2020-12-01T09:21:15Z	300	194	2929	57.00%	440.40 Mi8/s	116.00 MiB/s	0	Range fixed	
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 Mi8/s	79.96 Mi8/s	0	Range fixed	
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 M18/s	63.40 MiB/s	0	Range fixed	
2020-12-01709:03:452	300	26	24	81.00%	110.26 M18/s	55.61 Mi8/s	0	Range fixed	

First Previous 1 Next Last

Timestamp	Decision	Running	Queue	Success rate (last lmin)	Throughput	EMA	Diff	Explanation	
2020-12-01T11:03:54Z	350	183	2137	84.00%	1.18 GiB/s	800.38 MiB/s	6	Range fixed	
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 Gi8/s	755.59 Mi8/s	0	Range fixed	
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 Gi8/s	709.42 Mi8/s	0	Range fixed	
2020-12-01T10:49:15Z	350	185	2312	85.00%	1.14 G18/s	657.39 M18/s	0	Range fixed	
2020-12-01T10:42:48Z	350	186	2367	81.00%	1.07 G18/s	600.82 M18/s	0	Range fixed	
2020-12-01T10:35:21Z	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0	Range fixed	
2020-12-01T10:27:34Z	350	127	2556	84.00%	871.47 MiB/s	503.33 M18/s	θ	Range fixed	
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M1B/s	462.42 M1B/s	θ	Range fixed	
2020-12-01T10:08:17Z	300	133	2694	84.00%	1014.78 MiB/s	404.31 MiB/s	θ	Range fixed	
2020-12-01T09:55:39Z	300	118	2798	88.60%	870.12 MiB/s	336.48 MiB/s	0	Range fixed	
2020-12-01T09:42:52Z	30		2884	88.60%	799.20 MiB/s	277.19 MiB/s	0	Range fixed	
2020-12-01T09:35:03Z	30 NE'	W BULK	2989	81.00%	631.83 MiB/s	219.19 MiB/s	8	Range fixed	
2020-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	6	Range fixed	
2020-12-01T09:21:15Z	300	194	2929	57.00%	440.40 MiB/s	116.00 MiB/s	0	Range fixed	
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 Mi8/s	79.96 MiB/s	0	Range fixed	
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 M18/s	63.40 M18/s	0	Range fixed	
2020-12-01709:03:452	300	26	24	81.00%	110.26 M18/s	55.61 Mi8/s	0	Range fixed	

First Previous 1 Next Last

Timestamp	Decision	Running	Queue	uccess rate (last lmin)	Throughput	ЕМА	Diff	Explanation
2020-12-01T11:03:54Z	350	183	2137	84.00%	1.18 GiB/s	800.38 MiB/s	6	Range fixed
2020-12-01T10:59:35Z	350	183	2174	84.00%	1.14 GiB/s	755.59 MiB/s	0	Range fixed
2020-12-01T10:54:59Z	350	184	2250	86.00%	1.15 GiB/s	709.42 MiB/s	0	Range fixed
2020-12-01T10:49:15Z	350	185	2312	85.00%	1.14 G18/s	657.39 M18/s	0	Range fixed
2020-12-01T10:42:48Z	350	185	2367	81.00%	1.07 G18/s	600.82 M18/s	0	Range fixed
2020-12-01T10:35:21Z	350	183	2443	80.00%	933.49 M18/s	546.35 M18/s	0	Range fixed
2020-12-01T10:27:34Z	350	127	2556	84.00%	871.47 MiB/s	503.33 M18/s	θ	Range fixed
2020-12-01T10:19:03Z	350	125	2611	82.00%	985.44 M1B/s	462.42 M1B/s	θ	Range fixed
2020-12-01T10:08:17Z	300	133	2694	84.00%	1014.78 M1B/s	404.31 M1B/s	θ	Range fixed
2020-12-01T09:55:39Z	300	118	2798	88.00%	870.12 MiB/s	336.48 M1B/s	0	Range fixed
2020-12-01T09:42:52Z	300	133	2884	88.60%	799.20 MiB/s	277.19 MiB/s	θ	Range fixed
2020-12-01T09:35:03Z	300	132	2989	81.00%	631.83 MiB/s	219.19 MiB/s	8	Range fixed
2020-12-01T09:27:38Z	300	192	2947	100.00%	689.37 MiB/s	173.34 MiB/s	0	Range fixed
2020-12-01T09:21:15Z	300	194	2929	57.00%	440.40 MiB/s	116.00 MiB/s	0	Range fixed
2020-12-01T09:15:34Z	300	195	2896	68.00%	228.99 Mi8/s	79.96 MiB/s	0	Range fixed
2020-12-01T09:09:51Z	300	17	26	81.00%	133.48 Mi8/s	63.40 M18/s	0	Range fixed
2020-12-01T09:03:45Z	300	26	24	81.005	110 26 N(B/s	55.61 M18/s	0	Range fixed
				LINK WAS	N'T EMPTY			

March 24, 2021

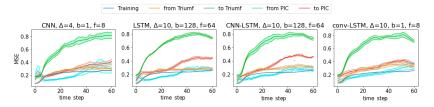


Figure: Average MSE and its variance with respect to the forecasting steps (here: $\Gamma=60).$

Table: Comparison of model parameters on the test data set representing transfers from TRIUMF to Tier0/Tier1. MSE_{\Psi,0} and MSE_{\Psi} means respectively MSE_0 and MSE average during Ψ period. Ψ period means saturation and short drop between two saturation periods (slide 41). $\Gamma = 15$ (30 minutes). S is the standard deviation over 10 training repetitions.

Δ	Model	Batch - Filters\ Units	MSE _Ψ (Γ)	<i>S</i> (MSE _Ψ (Γ))	$MSE_{\Psi,0}$	$S(MSE_{\Psi,0})$
4	CNN	1 - 8	0.206	0.007	0.206	0.009
	LSTM	128 - 64	0.224	0.008	0.042	0.005
	CNN-LSTM	128 - 64	0.233	0.015	0.060	0.007
	CONV-LSTM	1 - 8	0.159	0.012	0.048	0.007
10	CNN	1 - 8	0.223	0.095	0.223	0.010
	LSTM	128 - 64	0.185	0.012	0.025	0.006
	CNN-LSTM	128 - 64	0.188	0.011	0.021	0.006
	CONV-LSTM	1 - 8	0.125	0.008	0.036	0.008

home.cern