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World Changers
Shaped Here .

History
e ML for LHC (Apr 2018) at MIT [URL]
e UltraFast DNN (Feb 2019) Zurich [URL]
e st Edition (Sep 2019) at FNAL [URL]
e 2nd Edition (30 Nov - 3 Dec, 2020) Virtual (this workshop)

o Allison Deiana (LOC chair)
o 3 days of workshops (581 registrations)
m 47 plenary talks
o 1 day of FastML tutorials (60 participants)

Mini-workshop on Portable Inference (Dec 4 2020)
e An IRIS-HEP Blueprint Workshop (32 participants)
e Mark Neubauer (Host)
e https://indico.cern.ch/event/972791
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https://indico.cern.ch/event/924283/page/20520-previous-workshops
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Nhan Tran

Why we're here...

Cutting edge science requires:

Faster, more precise, bigger, more granular,...

Real-time, accelerated machine learning can greatly accelerate time to
science, allowing us to:

» test hypotheses significantly faster
» enhance and automate performance of detectors/accelerators
» save and maximize potentially lost data



A Multi-
Disciplinary
Workshop

Domain-
inspired ML

Machine
learning
techniques

You ARE
HERE!



Outline

e The FastML workshop has a good mix between coprocessor and low latency
e This talk will highlight coprocessor specific contents
e Advances in heterogeneous computing
m Compute trends and tools

e Applications for accelerated ML

m Challenges in LHC physics
m Challenges in adjacent science domains



Trends in computing architectures Michaela Blott

Limits of semiconductor chip development Moore’s law, Denard scaling, High manufacturing cost of 3
nm/ Trends driven by big data explosion & computationally expensive ML methods.
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More types of hardware

~

Maturity

PCRAM

BL
s 2D FeRAM
WL B
] 1T-
CBRAM

3DNAND
1+10 TB/in?
Ny

Passive
“0T1R”

\ would allow
extra-large
. models on
Active “1T7" chip!
40 P now, <20 P with FinFET
Active
b e 2D NOR

Beyond CMOS tech maturity, Dmitri Strukov

LIGO Supervised GW-Detection Nengo-DL

few 100’s P for current, 2
potentially down to 25 P 1T-RRAM | <<4r
3D FeRAM?
e
F=feature size 3D RRAM
>
Cell density
2
©
o
2
.‘%’
(o]
a
()]
2
[

First exploration on neuromorphic chips,
Bartlomiej Borzyszkowski, Eric Moreno
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= Trained LoihiSpikingReLU (auc = 0.67)
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Layer (type) Output Shape Param #
input (Inputlayer) [(None, 2048)] [
reshape (Reshape) (None, 2048, 1, 1) ]
convad (Conv2D) (None, 2045, 1, 16) 64
conv2d_1 (Conv2D) (None, 511, 1, 16) 1024
conv2d_2 (Conv2D) (None, 127, 1, 32) 2048
convad_3 (ConvaD) (None, 31, 1, 64) 8192
conv2d_4 (Conv2D) (None, 6, 1, 128) 65536
flatten (Flatten) (None, 768) °
dense (Dense) (None, 128) 98304
dense_1 (Dense) (None, 64) 8192
output (Dense) (None, 2) 130

Total params: 183,490
Trainable params: 183,490
Non-trainable params: @

Executed on Loihi chip

— Off-chip

ON-chip



https://indico.cern.ch/event/924283/contributions/4105325/attachments/2155010/3634585/B.Borzyszkowski%2C%20E.Moreno%20-%20Anomaly%20Detection%20with%20SNNs%20on%20Neuromorphic%20Chips.pdf
https://indico.cern.ch/event/924283/contributions/4105169/attachments/2153919/3632733/Fast%20mashine%20learning%20Strukov%20final%20v2.pdf

Tools for rapid processing of ML algorithms

Intel OneAPI leads to fast CPU inference = Kubeflow tool for fast distributed training
Viadimir Loncar Large scale control of the system

deployed and available at CERN

Dejan Golubovic

~\
' Node '

Training Pod

MNIST inference time ( Kubeflow Cluster )

@
o 9 @

)
w
2
E
w
o
frs
4
&
o

Training Pod

- E Submit training job
20000

0.0000

1 [ a4 [16 32 [ 64 [128]256
oneDNN | 4.5606 | 1.1344 0.4239 |0.2904|0.23880.2691 |0
keras/tf |12.296|4.0958 2.6843[3.1760| 0.6712| 17167 |0.5360
=  BATCHSIZE

2z
Q
Q
[J]

Training Pod

oneDNN keras/tf



https://indico.cern.ch/event/924283/contributions/4105328/attachments/2153724/3632143/2020-12-01-Kubeflow-FastML.pdf
https://indico.cern.ch/event/924283/contributions/4105196/attachments/2153049/3630831/fastml2020_oneapi_vloncar.pdf

Tools for large distribution of networks on FPGAs
Algean TOOI Flow Naif Tarafdar k.
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https://indico.cern.ch/event/924283/contributions/4105333/attachments/2154984/3634529/aigean_fastml.pdf

Tools for large distribution of networks on FPGAs

A large FPGA cluster to study algorithms across many FPGAS
FPGAs are linked with high speed connection
Leads to a very different use of HPC cluster

Hos!
Guest OS Guest OS Guest OS Guest OS Guest OS Guest OS

Guest OS Guest OS

O I m  EE e o) 10 FPGA nodes

157 GB 157 GB 108 GB 108 GB 108 GB 108 GB 108 GB 108 GB

0 Gb/s
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| 100 Gb/s Switch I
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Efficient Design at the Edge

e \What optimizations in precision and design can lead to speed-ups and power
reductions?

How Does ILP Find the Trade-Off?

Using Latency As Constraint
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Challenges in LHC Physics

12



Offline Reconstruction (1 KHz, 1 s latency)

The need for qul' ML Jennifer Ngadiuba
100 KHz . 1 KHz |
‘ 1 MB/evt
40 MHz H;?.i;::vrel recocr):::':‘:hon

. L1 trigger
ATTTA

Computing time
1 ns 1 ps 100 ms 1%
: : | >
latency constraint latency AND throughput

throughput constraint constraint



Offline Reconstruction (1 KHz, 1 s latency)

- ‘ An example: tracking Mooy @520 c*;

ViR Offline *New “faster” solutions being studied based on graph neural networks

reconstruction

each tracker hit is a node
edges built from geometrical consideration

* Graph construction: o W
\
A

* Edge classification:

the GNN decides which edges connect 10

hits from the same track
0.8

| Grey edge: fake
4e, | Red edge : true 0.6

For edge score > 0.5:
96% efficiency
96% purity

04

0.2
— BULitY
—— efficiency

0.0

0.0 0.2 04 0.6 0.8 1.0
Cut on model score

NeurlP$ 2019 ~ CTD 2020 22




High-Level Trigger (100 KHz, 100 ms latency)

- MLaa$S with SONIC et

1 MB/evt

Offline *Services for Optimized Network Inference on Coprocessors (SONIC)
reconstruction . . . .
enables inference as a service in experiment software frameworks

- experiment software (C++) only has to handle converting inputs and outputs between
event data format and inference server format

100 KHz

>—>

* Uses industry tools as gRPC communication and Nvidia Triton inference servers

High-Level
trigger ¢ Interacts with cloud services: Azure, AWS, GCP

gRPC
Cloud/Ground /_\ \ PCle
CPU Cliert A . P°'S Coprocessor
(eq. CMS software) ea b L (eg. FPGA, GPU, ...)

gRPC 1. Runs the inference



Level 1 Trigger (40 MHz, 1 us latency)

1 KHz

-

1 MB/evt

Offline
reconstruction

100 KHz
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High-Level
trigger

D
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L1 trigger

high level synthesis for machine learning

* A package for automatic translation of trained NN into HLS project

* Optimization for low-latency inference

*Very customazible: tunable precision and parallelization (area vs latency)
* Many architectures supported (dense NN, CNN, LSTM, Graph NN)
*Includes an interface to the library and several utilities

Keras
TensorFlow
PyTorch

v,

v
N

his 4 mli
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HLS

Co-processing kernel

/

compressed
model —

Usual ML

HLS
conversion

software workflow
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COMPILER
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Custom firmware
design
7 g Catapult
& Menlor
tune configuration ASiomens Buonesi
precision .
reuse/pipeline More in:

S. Summers tutorial Thursday @ 9:00/13:00
V. Loncar talk Monday @ 15:00
H. Javed talk Monday @ 15:40
I Aarrestad talk Tuesday @ 14:50
VR 2 ; W @ 15:30

s




Ultra Fast ( 1ns)

1 KHz . e
— Example: CMS HG calorimeter
1 MB/evt
Off:ine'_ Input Output:
e S 48 “trigger cells” > B “Super trigger cell” algo
7b floating point il 3[16 TC sum] x 13b = 3%b
100 KHz (336b total)

Can we do a better job of encoding the info in
those bits w/o so much loss in granularity?

>-

High-Level
trigger
Encoder on ASIC Decoder on L1 board
n J T Really need
Ly decoded shape ql:mntized training
! ere to optimize
40 MHz’ { information encoding
L1 trigger 7
A 99 H :[g? E-N Use QKeras!
N 5

Expansive part:
(*volume" of conv. ouput)

x
(encoding dim)

More in G. Di Gluglielmo talk
Monday @ 14:50



Challenges in adjacent science domains
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Gravitational Waves Challenges

Inference-as-a-Service LIGO deep clean algorithm, Alec Gunny

e Portable

Download

+
O Caffe2
e fFramework and

architecture agnostic ‘—“|':_ =
e Critical for applications L= T
like DeepClean that .
need frequent retraining 1‘ TensorFlow
(N N

e (Co-locate downstream models for @ O N N X
better resource allocation/autoscaling

e Manage and accelerate end-to-end
R latency of DeepClean + downstream
NG — J algorithms to meet requirements

H’ﬂ““*“ﬁfﬁ”"‘fﬂ




Neutrino Astrophysics challenge

Kate Scholberg

SNEWS Alert Latency
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Now, the example where FastML may help!

Methods for Pointing Using Neutrinos

O Anisotropic neutrino interactions
combined with detector technology that can exploit it,
using the burst neutrino signal

O Triangulation
using inter-detector timing

O Oscillation pattern pointing
in high-energy resolution detectors

O High-energy (~GeV) neutrino follow-on pointing

in directional detectors, using later neutrinos

Q4 All of the above!




Accelerator Neutrinos reading out and processing

W CHINGCIININAT Jeremy Hewes

Sparse Convolutions
- First paper investigating sparse CNNs == ‘

within neutrino physics demonstrated ol e

significant improvements in inference time = 77777777777777777777777777777

and memory usage for a MicroBooNE- S ! e oy 8

equivalent detector. g 1] ; Computational challenge in

* s Accelerator Neutrinos
- Sparse convolutions remove the need for : e e A ; ;
e it re quickly becoming large
ROI-finding in large detectors. ’ 0 200 400 600 800 1000 9 y 9 9
Batch size
- Scale of sparse pixel map set by
number of active pixels. eI SPee
- Detector region can be arbitrarily large g o

- Sparse CNN approaches are being § 2

developed across the SBN and DUNE

Near Detector by SLAC, and in NOvA and N e e e

ProtoDUNE by University of Cincinnati. Batch size

arXiv:1903.05663

21



Challenges at Electron lon Collider (EIC)

Markus Diefenthaler
Streaming readout and its opportunities

Definition of streaming readout

* datais read out in continuous parallel streams that are encoded with information
about when and where the data was taken.

Advantages of streaming readout
* opportunity to streamline workflows
* take advantage of other emerging technologies, e.g. Al / ML

Integration of DAQ, analysis and theory to optimize physics reach
e seamless data processing from DAQ to analysis using streaming readout

Front End
data

Analysis

Data Processor b

Front End
data
Front End
Front-End et

* opportunity for near real-time analysis using Al / ML
* opportunity to accelerate science (significantly faster access to physics results)

Fast Machine Learning for Science, December 2, 2020 17 J,e/ffggon Lab



Plasma Physics: From Prediction to Control

Bill Tang
e How do we control a plasma?

Faster-than-real-time prediction

Forecast
future behawor of the “Where we think
shot via Al softwa we can be"
Denetcs Supervisory control
lagnostics :
g fmn'1 ||m?teg S%Q,?,%né “Where Actuator fee%te)acks?gfavorable
measurements we think plan mission [gwdanoe of shot but
we are can shut down if necessary
Real-time prediction
on Dill-D Actuator planning ‘
“Where to opt|m|ze perfonnance ‘Where we
] + aV0Id machine limits |  think we
we want via Al software could go"

to go"

Much-faster-than-real-time prediction



Accelerator Control

e How do we control proton accelerator?

Booster: 400 MeV—> 8 GeV

Booster ring

series
connect

Christian Herwig

target T
sampled *

Programmable
logic

Environment ]4—

settings measurements
(& errors)

action
AI
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Material Science

Processing Large amounts of data in near real-time

Camera

FPGA Accelerator
<50 ms inference

Materials Science, Josh Agar

Laser Energy

Mass Flow Controller

anﬂ”

Laser Optics
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Conclusions

New developments in computing allow for larger use of computing

e New tools are emerging to allow for more advanced applications
o Tools for large scale use of GPUs, FPGAs
o Tools to improve algorithm design to reduce latency and resources
e New opportunities for use of fast ML in design
o Real-time readout and processing in LHC collider physics
o Real-time readout in neutrino physics, astrophysics and gravitational wave
o Real-time control and operations in accelerator, plasma and materials science
e Supplement workshop with forward-looking white paper to

o Establish key applications and identify overlaps between domains scientific applications for
resource-constrained ML (tentative timeline Feb 15 2021)
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Backup
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Trends in Computer Architecture

Specialization = > Increasingly Heterogeneous

Xilinx Example:

5 Series Processing Al Engines /0 FPGA -> ACAP
: System
Versal ARM Transceivers

DDR ctl

More hardened functionality (=> heterogeneous)
to improve compute density and save power

© Copyright 2020 Xiinx £ XILINX.
LogicNets with FPGAs
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Source: HotChips2019



Beyond CMOS:

Neuromophic Computer

would allow

extra-large

models on
chip!
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