Physics with charmonia at the SPD experiment

Igor Denisenko (on behalf of the SPD working group) iden@jinr.ru

Quarkonia As Tools 2021 22-26 March 2021

Nuclotron-based Ion Collider fAcility (NICA)

Joint Institute for Nuclear Research (Dubna)

Booster

Nuclotron

Cryogenics

Spin Physics Detector (SPD)

Polarized beams

 $\mathbf{p} \uparrow \mathbf{p} \uparrow$ at $\sqrt{s_{pp}} = \mathbf{10} - \mathbf{27} \text{ GeV}$, $\mathbf{L}_{av} \approx \mathbf{10}^{32} \text{ cm}^{-2} \text{s}^{-1}$ $\mathbf{d} \uparrow \mathbf{d} \uparrow$ at $\sqrt{s_{NN}} = \mathbf{4} - \mathbf{13} \text{ GeV}$ longitudinal and transverse polarization (UU, LL, TT, UT, LT) ~ 70%

Operation: after 2025

lon source

LU-20

NICA and other facilities

Experimental	SPD	RHIC 29	EIC [26]	AFTER	SpinLHC
		Kine [29]	EIC [20]		-
facility	@NICA [30]			@LHC [24]	25
Scientific center	JINR	BNL	BNL	CERN	CERN
Operation mode	collider	collider	collider	fixed	fixed
				target	target
Colliding particles	p^{\uparrow} - p^{\uparrow}	p^{\uparrow} - p^{\uparrow}	e^{\uparrow} - p^{\uparrow} , d^{\uparrow} , ³ He $^{\uparrow}$	p - p^{\uparrow} , d^{\uparrow}	$p ext{-}p^{\uparrow}$
& polarization	d^{\uparrow} - d^{\uparrow}				
	p^{\uparrow} - d , p - d^{\uparrow}				
Center-of-mass	≤27 (<i>p</i> - <i>p</i>)	63, 200,	20-140 (ep)	115	115
energy $\sqrt{s_{NN}}$, GeV	\leq 13.5 (<i>d</i> - <i>d</i>)	500			
	\leq 19 (<i>p</i> - <i>d</i>)				
Max. luminosity,	~1 (<i>p</i> - <i>p</i>)	2	1000	up to	4.7
$10^{32} \text{ cm}^{-2} \text{ s}^{-1}$	\sim 0.1 (<i>d</i> - <i>d</i>)			$\sim 10 \ (p-p)$	
Physics run	>2025	running	>2030	>2025	>2025

arXiv:2102.00442

The SPD experiment

Primary physics goal – proton and deuteron spin-dependent gluon structure.

GLUONS	uons unpolarized		linear	
U	(f_1^g)		$h_1^{\perp g}$	
L		$\left(g_{_{1L}}^{g}\right)$	$h_{_{1L}}^{\perp g}$	
Т	$f_{1T}^{\perp g}$	g_{1T}^g	$h_{\scriptscriptstyle 1T}^g,h_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$	

Acta Phys.Polon.B 46 (2015)

Theoretical paper arXiv:2011.15005 (accepted to PNPP)
(many thanks to all contributors!)
Complimentary probes:

arXiv:2011.15005

Spin Physics Detector

6 s.c. coils: field up to 1T

Components

Vertex detector (VD): DSSD (5 layers) or MAPS (3 layers) + DSSD(2 layers) $\sigma_{r\varphi}$ < 50 μm, σ_{z} < 100 μm

Straw tracker (ST): σ~150 μm de/dx

Particle identification (PID)

TOF: plastic scintillators or MRPC

 σ < 70 ps

Aerogel counters

Sampling Ecal: $\sigma_{E}/E = 5\%/\sqrt{E \otimes 2\%}$

Range System (RS): muon identification and coarse hadron calorimetry

SPD advantages: 4π detector, open spectrometer (possibility to study not only J/ψ), high statistics

SPD CDR: arXiv:2102.00442

Status of the NICA SPD project

- Positive feedback from JINR PAC in January 2021
- DAC and the collaboration are being formed
- CDR published (arXiv:2102.00442)
- TDR is expected this year

Charmonia production as a probe of gluon TMD PDFs

Charmonia production

- dominated by gluon-gluon fusion
- high cross-section
- J/ ψ can be easily reconstructed from the $\mu^+\mu^-$ decay, $\psi(2S)$ and χ_{cl} can be reconstructed based on this decay
- hadronization of cc pair is not well understood theoretically:
 - CSM
 - Color Evaporation Model
 - NRQCD
- TMD factorization may be violated
- η_c might be the best probe, but its observation is challenging experimentally
- the J/ψ signal is "contaminated" by feed-down contributions

Gluon TMD PDFs

GLUONS	unpolarized	circular	linear
U	f_1^g		$h_1^{\perp g}$
L		g_{1L}^g	$h_{_{1L}}^{_{\perp g}}$
Т	$f_{1T}^{\perp g}$	$\mathcal{oldsymbol{\mathcal{g}}}_{1T}^{g}$	$h_{\scriptscriptstyle 1T}^{\scriptscriptstyle g},h_{\scriptscriptstyle 1T}^{\scriptscriptstyle \perp g}$

Acta Phys.Polon.B 46 (2015)

Some probes with charmonia production:

- f_1^g : $\eta_c X$, $\chi_{cJ} X$, $2J/\psi X$, $J/\psi \gamma X$...
- Sivers function (p[↑]p): $J/\psi X$, $\chi_{cJ} X$, $\eta_c X$, ...
- Gluon polarization (p→p→): J/ψX, ...
- Boer-Mulders function: $\eta_c X$, $\chi_c X$, $2J/\psi X$, $J/\psi \gamma X$, ...

Charmonia production at SPD

- High statistics: 12 million inclusive J/ψ(→μ⁺μ⁻) events per year
- Strategy is to obtain all possible measurements in the wide kinematic range
- Constrain both theoretical approaches and PDFs
- Our p_T are mostly below $M_{J/\psi}$
- LDME → shape functions (Echevarria,2019)?

The J/ψ p_T distribution from NA3 at $\sqrt{s}=19.4~{
m GeV}$

Reconstruction of $J/\psi \rightarrow \mu^{\dagger}\mu^{-}$ at SPD

Muon/pion separation will be based on patterns in RS (standard algorithms + ML).

Background

- pion decay muons
- Pions passing significant distance in RS
- Combination

MB events simulated with Pythia6 and Pythia8. Inclusive J/ψ - Pythia8

For the results below:

- $E_{CMS} = 27 \text{ GeV}, t = 10^7 \text{s}$
- muon candidate must pass more than 3\
- additional cuts on polar angle

Inclusive J/ψ measurements

- Reconstruction efficiency: 35-45%
- Statistics: ~4.6 M (selected events) per year
- Large background
- Errors are estimated using the LSM method

Observables:

- cross-section, p_T-, x_F-dependencies
- polarization
- asymmetries

A_{N} for inclusive J/ ψ production

$$\sigma(\phi) \propto 1 + P \cdot A_N \sin(\phi_{\rm pol} - \phi)$$

Here and in the following $P \sim 0.7$ and is constant during the run.

Probes $f_{1T}^{\perp g}$. For GPM (JHEP09(2015)119):

For CGI GPM see PRD99, 036013 (2019)

PRD98, 012006 (2018)

A_{N} for inclusive J/ ψ production

- GPM predictions for SIDIS1 and d'Alesio PDFs (see talk by A. Karpishkov)
- for CGI GPM asymmetry is smaller (see talk by A. Karpishkov)
- statistical errors given assuming a single polarized beam
- 3 different cuts on $|\cos\theta|$ are shown
- SPD measurements in wide kinematic range should probe/constrain GSF and discriminate theoretical approaches to charmonia production

Maximized A_N for SPD, GPM and CGI GPM

A_{II} for inclusive J/ψ production

$$A_{LL}^{J/\psi} = \frac{\Delta\sigma}{\sigma} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$$
$$A_{LL}^{J/\psi} \approx \frac{\Delta g(x_1)}{g(x_1)} \otimes \frac{\Delta g(x_2)}{g(x_2)} \otimes \hat{a}_{LL}^{gg \to J/\psi + X}$$

Probe for $g_{1}^{g}(\Delta g)$

For PHENIX $x_1 \sim 5 \times 10^{-2}$ $x_2 \sim 2 \times 10^{-3}$

A_{II} for inclusive J/ ψ production at SPD

$$A_{LL}^{J/\psi} pprox rac{\Delta g(x_1)}{g(x_1)} \otimes rac{\Delta g(x_2)}{g(x_2)} \otimes \hat{a}_{LL}^{gg o J/\psi + X}$$

- |y|<2 is covered
- At SPD both $\Delta g(x_1)$ and $\Delta g(x_2)$ are expected to be close to the maximum
- A measurable A_{II} of the order of 1-10% can be expected
- The measurements should constrain Δg and J/ψ production models

$A_{LL} = \frac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}}$ $= \frac{1}{P_1 P_2} \frac{N^{++} - RN^{+-}}{N^{++} + RN^{+-}}$ $\sigma_{A_{LL}} \approx \frac{1}{P^2} \frac{\sigma_N}{N}$

Projected statistical uncertainties for SPD

On measurements of $\chi_{cl}, \chi_{cl} \rightarrow \gamma J/\psi$

 χ_{cl} production at low energy experiments (table extracts from PRD79,012001 (2009))

E	h /	/7.a\	NT.	A7		$\sigma(\chi_{c1})$	7(2/2)	7(21-)
Exp .	beam/	$\sqrt(s)$	$N_{J/\psi}$	N_{χ_c}	$R\chi_c$	$\sigma(\chi_{c2})$	$\sigma(\chi_{c1})$	$\sigma(\chi_{c2})$
	target	GeV			_		(nb/n)	(nb/n)
ISR [6]	pp	< 55 >	658	31 ± 11	0.43 ± 0.21			
R702 [7]	pp	52.4,62.7	975		$0.15^{+0.10}_{-0.15}$			
ISR [8]	pp	62			0.47(8)			
E610 [9]	pBe	19.4,21.7	157 ± 17	11.8 ± 5.4	0.47(23)	0.24(28)	39(49)	162(81)
E705 [10]	pLi	23.8	6090 ± 90	250 ± 35	0.30(4)	0.09(29)(17)	24(48)(2)	244(83)(16)
E771 $[12]$	pSi	38.8	11660 ± 139	66	0.76(29)(16)	0.61(24)(4)	488(128)(56)	805(231)(92)
HERA-B [14]	$_{ m pC,Ti}$	41.6	4420 ± 100	370 ± 74	0.32(6)(4)			
CDF [11],[13]	$par{p}$	1800	${88000 \atop 32642 \pm 185}$	${119\pm14\atop 1230\pm72}$	0.297(17)(57)	1.19(33)(14)		

Also HERA-B PRD79,012001 (2009): **15000** χ_{cJ} events

$$R_{12} = \frac{\sigma(\chi_{c1})B(\sigma(\chi_{c1}) \to \gamma J \psi)}{\sigma(\chi_{c2})B(\sigma(\chi_{c2}) \to \gamma J \psi)}$$

$$C \qquad 1.06 \pm 0.21_{st} \pm 0.37_{sys}$$

$$Ti \qquad 0.67 \pm 0.67_{st} \pm 0.23_{sys}$$

$$W \qquad 0.98 \pm 0.36_{st} \pm 0.34_{sys}$$

$$Tot \qquad 1.02 \pm 0.17_{st} \pm 0.36_{sys}$$

From HERA-B (Phys. Rev. D 79, 012001)

Both the feed-down contribution and relative contributions of χ_{c1} and χ_{c2} are important for validation of theoretical models!

On measurements of χ_{cl} , $\chi_{cl} \rightarrow \gamma J/\psi$ at SPD

- Reconstruction via γJ/ψ
- χ_{c1} and χ_{c2} mass difference ~45 MeV
- Expected statistics: ~500K selected events for both states (30% feed-down assumed)
- Relative production rate of χ_{c1} and χ_{c2} validates models
- LO CS NRQCD [Boer, Pisano, 2012]:

$$\frac{d\sigma(\chi_{Q2})}{dy \, d^{2} \boldsymbol{q}_{T}} = \frac{32}{9} \frac{\pi^{3} \alpha_{s}^{2}}{M^{5} s} \langle 0 | \mathcal{O}_{1}^{\chi_{Q2}}(^{3} P_{2}) | 0 \rangle \, \mathcal{C} \left[f_{1}^{g} \, f_{1}^{g} \right]
\frac{d\sigma(\chi_{Q0})}{dy \, d^{2} \boldsymbol{q}_{T}} = \frac{8}{3} \frac{\pi^{3} \alpha_{s}^{2}}{M^{5} s} \langle 0 | \mathcal{O}_{1}^{\chi_{Q0}}(^{3} P_{0}) | 0 \rangle \, \mathcal{C} \left[f_{1}^{g} \, f_{1}^{g} \right] \left[1 + R(\boldsymbol{q}_{T}^{2}) \right] \qquad R(\boldsymbol{q}_{T}^{2}) \equiv \frac{\mathcal{C} \left[w \, h_{1}^{\perp g} \, h_{1}^{\perp g} \right]}{\mathcal{C} \left[f_{1}^{g} \, f_{1}^{g} \right]}$$

• For χ_{c0} and χ_{c2} TMD factorization holds only for one loop level (Ma,Wang, Zhao, 2014)

SPD measurements:

- differential cross-section as function of p_T and x_F
- relative contribution of the χ_{c1} and χ_{c2}

On inclusive $\psi(2S)$ production at SPD

- No feed-down contributions
- $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ does not look promising (compared to J/ ψ yield is suppressed by approximately 50)
- $\psi(2S) \rightarrow \pi^+\pi^-J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$ according to preliminary studies:
 - is feasible, a narrow peak (~10 MeV) in M(π⁺π⁻ μ⁺μ⁻) M(μ⁺μ⁻) can be seen on a significant background
 - about 100K selected events per year are expected.

On η_c production

- The theoretically cleanest probe of gluon structure:
 - CS production
 - TMD factorization is proven
 - probes f_1^g and $h_1^{\perp g}$

$$\frac{d\sigma(\eta_Q)}{dy\,d^2\boldsymbol{q}_T} = \frac{2}{9} \frac{\pi^3 \alpha_s^2}{M^3 \, s} \, \langle 0 | \mathcal{O}_1^{\eta_Q}(^1S_0) | 0 \rangle \, \mathcal{C} \left[f_1^g \, f_1^g \right] \, \left[1 - R(\boldsymbol{q}_T^2) \right]$$

Boer, Pisano, 2012

- · Experimentally challenging
- For SPD two modes, $p\bar{p}$ and $\Lambda\bar{\Lambda}$, can be used
- Expected statistics is 600K for pp (conservative estimate) before the event selection.

Associate J/ψ production

Double J/ψ production is promising:

- CS production, avoids TMD-factorization breaking effects
- In unpolarized collisions probes f_1^g and $h_1^{\perp g}$

$$\frac{1}{2\pi} \int \!\! d\phi_{\rm CS} \frac{d\sigma}{dM_{QQ} dY_{QQ} d^2 \boldsymbol{P}_{QQT} d\Omega} = F_1 \, \mathcal{C} \Big[f_1^{\,g} f_1^{\,g} \Big] + F_2 \, \mathcal{C} \Big[w_2 h_1^{\perp \,g} h_1^{\perp \,g} \Big]$$

At SPD:

- The cross-section is 27±10 pb at √s=27 GeV (NA3, PLB158,85)
- Yield: 50-100 selected events for both dimuon and dielectron modes
- dσ/dp_T for low-p_T, complimentary to "big" experiments
- probing evolution effects, x-dependence?

EPJC80, 87 (2020)

Ideas from JPL talk at the workshop "Gluon content of proton and deuteron with SPD at NICA"

Summary

- The SPD experiment is expected to provide important high-precision measurements of charmonia production (kinematic distributions, polarization and asymmetries) with unique high-statistics polarized data for √s between 10 and 27 GeV (4 − 13 GeV for dd).
- The measurement will constrain charmonia production models and probe gluon TMD PDFs (the latter will be complimented by other probes).
- These measurements should also allow the study of QCD factorization and factorization-breaking effects.
- We are very open to new ideas and suggestions.
- Adding our energy point (\sqrt{s} =27 GeV) in your future predictions would be extremely important for us.