Estimates for the transverse single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA

A. V. Karpishkov^{1,2}, M. A. Nefedov¹, and V. A. Saleev^{1,2}

¹ Samara National Research University, Samara, Russia
² Joint Institute for Nuclear Research, Dubna, Russia

 $\begin{array}{c} 24.03.2021\\ \text{Quarkonia as Tools 2021} \end{array}$

Outline

9 Generalized Parton Model (GPM) and it's application to calculation of TSSA

- Factorization formula for the GPM
- Polarized production. TSSA
- Including ISI and FSI Color Gauge Invariant formulation of GPM
- 2 TSSA in GPM and CGI-GPM
 - Numerical results. Comparison to PHENIX data
 - Numerical results. Predictions for NICA

Summary

Estimates for the transverse single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA

Generalized Parton Model (GPM) and it's application to calculation of TSSA

Estimates for the transverse single-spin asymmetries in $p^{T}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Factorization formula for the GPM

Factorization schemes in different p_T -regions

The traditional Collinear Parton Model (CPM) is applicable in a region of high- p_T production

$$\mu \sim p_T \gg \Lambda_{QCD},$$

so we can neglect influence of small intrinsic $\mathbf{q_T}$ of initial partons $(\langle q_T^2 \rangle \simeq 1 \text{ GeV}^2)$.

But if we're interested in particle production in a region of $p_T \simeq \sqrt{\langle q_T^2 \rangle} \ll \mu$, we should take into account intrinsic q_T . It can be done within TMD approach, factorization for which has been proven in the limit $q_T \ll \mu$ [J. Collins, Camb. Monogr., Part. Phys. Nucl. Phys. Cosmol. 32, 1-624 (2011)]. In our case, the hard scale μ is given by charmonium mass $m_C = 3.1 \div 3.7$ GeV. So we can use phenomenological TMD-ansatz, a so called Generalized Parton Model (GPM), initial partons in which are on-shell:

$$q_{\mu} = xP_{\mu}^{+} + yP_{\mu}^{-} + q_{T\mu}, (q_{\mu})^{2} = 0, \qquad (1)$$

and a factorized prescription for TMD parton distribution functions (PDFs) is used:

$$F_a(x, q_T, \mu_F) = f_a(x, \mu_F)G_a(q_T),$$
 (2)

where $f_a(x,\mu_F)$ – corresponding CPM PDF, $G_a(q_T)$ – Gaussian distribution $G_a(q_T) = \exp(-q_T^2/\left\langle q_T^2 \right\rangle_a)/(\pi \left\langle q_T^2 \right\rangle_a).$

Estimates for the transverse single-spin asymmetries in $p^{T}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Factorization formula for the GPM

Factorization formula for the GPM

Within the GPM we can write the following expression for the differential cross-section of $2 \rightarrow 1$ hard subprocess $g(q_1) + g(q_2) \rightarrow C(k)$:

$$d\sigma(pp \to \mathcal{C}X) = \int dx_1 \int d^2 \mathbf{q_{1T}} \int dx_2 \int d^2 \mathbf{q_{2T}} \times F_g(x_1, q_{1T}, \mu_F) F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}), \quad (3)$$

where $C = J/\psi, \psi(2S)$ or $\chi_c(1P)$, and

$$d\hat{\sigma}(gg \to \mathcal{C}) = (2\pi)^4 \delta^{(4)}(q_1 + q_2 - k) \frac{\overline{|M(gg \to \mathcal{C})|^2}}{2x_1 x_2 s} \frac{d^4k}{(2\pi)^3} \delta_+(k^2 - m_{\mathcal{C}}^2).$$
(4)

In a case of $2 \to 2$ subprocess $g(q_1) + g(q_2) \to C(k) + g(q_3)$, $C = J/\psi, \psi(2S)$ in formula (3) $d\hat{\sigma}(gg \to C)$ must be replaced by:

$$d\hat{\sigma}(gg \to \mathcal{C}g) = (2\pi)^4 \delta^{(4)}(q_1 + q_2 - k - q_3) \frac{\overline{|M(gg \to \mathcal{C}g)|^2}}{2x_1 x_2 s} \frac{d^3k}{(2\pi)^3 2k_0} \frac{d^4q_3}{(2\pi)^3} \delta_+(q_3^2).$$
(5)

Four-momenta of initial partons are on mass-shell $(q_1^2 = q_2^2 = 0)$ and have longitudinal (along the Z-axis) and transverse parts:

$$q_{1}^{\mu} = \left(x_{1}\frac{\sqrt{s}}{2} + \frac{\mathbf{q}_{1T}^{2}}{2\sqrt{s}x_{1}}, \mathbf{q}_{1T}, x_{1}\frac{\sqrt{s}}{2} - \frac{\mathbf{q}_{1T}^{2}}{2\sqrt{s}x_{1}}\right)^{\mu}, \qquad (6)$$
$$q_{2}^{\mu} = \left(x_{2}\frac{\sqrt{s}}{2} + \frac{\mathbf{q}_{2T}^{2}}{2\sqrt{s}x_{2}}, \mathbf{q}_{2T}, -x_{2}\frac{\sqrt{s}}{2} + \frac{\mathbf{q}_{2T}^{2}}{2\sqrt{s}x_{2}}\right)^{\mu}. \qquad (7)$$

Estimates for the transverse single-spin asymmetries in $p^{T}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Polarized production. TSSA

Single Spin Asymmetry

In inclusive process $p^{\uparrow}p \to \mathcal{C}X \ \mathcal{C} = J/\psi, \chi_c, \psi(2S))$ TSSA is defined as:

$$A_N = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} = \frac{d\Delta\sigma}{2d\sigma}.$$
(8)

The numerator and denominator of A_N have the form:

$$d\sigma \propto \int dx_1 \int d^2 q_{1T} \int dx_2 \int d^2 q_{2T} F_g(x_1, q_{1T}, \mu_F) F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}X), \quad (9)$$

$$d\Delta \sigma \propto \int dx_1 \int d^2 q_{1T} \int dx_2 \int d^2 q_{2T} [\hat{F}_g^{\uparrow}(x_1, \mathbf{q}_{1T}, \mu_F) - \hat{F}_g^{\downarrow}(x_1, \mathbf{q}_{1T}, \mu_F)] \\ \times F_g(x_2, q_{2T}, \mu_F) d\hat{\sigma}(gg \to \mathcal{C}X), \quad (10)$$

where $\hat{F}_{g}^{f,\downarrow}(x,q_T,\mu_F)$ is the distribution of unpolarized gluon (or quark) in polarized proton.

Following the Trento conventions [A. Bacchetta, U. DAlesio, M. Diehl and C. A. Miller, Phys. Rev. D **70**, 117504 (2004)], the gluon Sivers function (GSF) can be introduced as

$$\Delta \hat{F}_{g}^{\uparrow}(x_{1}, \mathbf{q}_{1T}, \mu_{F}) \equiv \hat{F}_{g}^{(\uparrow)}(x_{1}, \mathbf{q}_{1T}, \mu_{F}) - \hat{F}_{g}^{(\downarrow)}(x_{1}, \mathbf{q}_{1T}, \mu_{F}) = = \Delta^{N} F_{g}^{\uparrow}(x_{1}, \mathbf{q}_{1T}^{2}, \mu_{F}) \cos(\phi_{1}) \equiv \left(-2\frac{q_{1T}}{M_{p}}\right) F_{1T}^{\perp g}(x_{1}, \mathbf{q}_{1T}^{2}, \mu_{F}) \cos(\phi_{1}).$$
(11)

Moreover, GSF must satisfy the positivity bound $\forall x_1, q_{1T}$:

$$\left|\Delta^{N}F_{g}^{\uparrow}(x_{1},\mathbf{q}_{1T}^{2},\mu_{F})\right| \leq 2F_{g}(x_{1},q_{1T},\mu_{F}). \tag{12}$$

Estimates for the transverse single-spin asymmetries in $p^T p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Including ISI and FSI – Color Gauge Invariant formulation of GPM

Single Spin Asymmetry within GPM and CGI-GPM frameworks

Figure 1 : Example diagrams for contributions to the numerator of TSSA in GPM (left panel) and CGI-GPM (right panel): ISI for production of ${}^{3}S_{1}^{(1)}$ -state. In GPM we can write the numerator of the asymmetry as follows:

$$d\Delta\sigma \propto \left(-2\frac{q_{1T}}{M_p}\right) F_{1T}^{\perp g}(x_1, \mathbf{q}_{1T}^2, \mu_F) \cos(\phi_1) \otimes F_g(x_2, q_{2T}, \mu_F) \otimes H_{gg \to cd}^U, \quad (13)$$

where $H_{gg\rightarrow cd}^U = \overline{|M(gg\rightarrow cd)|^2}$ – a coefficient-function in unpolarized case. Formally, the numerator of the asymmetry in the CGI-GPM approach ([L. Gamberg and Z. B. Kang, Phys. Lett. B **696**, 109 (2011)]) can be obtained from eq. (13) by with the substitution:

$$F_{1T}^{\perp g} H_{gg \to J/\psi g}^{U} \to \frac{C_{I}^{(f)} + C_{F_{c}}^{(f)}}{C_{U}} F_{1T}^{\perp g(f)} H_{gg \to J/\psi g}^{U} + \frac{C_{I}^{(d)} + C_{F_{c}}^{(d)}}{C_{U}} F_{1T}^{\perp g(d)} H_{gg \to J/\psi g}^{U} \equiv \\ \equiv F_{1T}^{\perp g(f)} H_{gg \to J/\psi g}^{Inc(f)} + F_{1T}^{\perp g(d)} H_{gg \to J/\psi g}^{Inc(d)}.$$
(14)

Estimates for the transverse single-spin asymmetries in $p^{T}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Including ISI and FSI – Color Gauge Invariant formulation of GPM

Feynman rules in the CGI-GPM and color factors for CSM

Figure 2 : Feynman rules for color factors within the CGI-GPM with additional eikonal gluon (with color index c).

The color factors are:

$$\mathcal{T}_{aa'}^c = \mathcal{N}_{\mathcal{T}} T_{aa'}^c, \mathcal{D}_{aa'}^c = \mathcal{N}_{\mathcal{D}} D_{aa'}^c, \mathcal{Q}_{ij}^c = \mathcal{N}_{\mathcal{Q}} t_{ij}^c, \tag{15}$$

where $T_{cb}^a \equiv -if_{acb}$, $D_{bc}^a \equiv d_{abc}$, $\mathcal{N}_{\mathcal{T}} = \frac{1}{Tr[T^cT^c]} = 1/(N_c(N_c^2 - 1))$, $\mathcal{N}_{\mathcal{D}} = \frac{1}{Tr[D^cD^c]} = 1/((N_c^2 - 4)(N_c^2 - 1))$, $\mathcal{N}_{\mathcal{Q}} = \frac{1}{Tr[t^ct^c]} = 2/(N_c^2 - 1)$. So, correspondingly, for the *f*-type (*C*-even) and *d*-type (*C*-odd) GSF, the relative color factor is therefore calculated from Fig. 1 as follows:

$$C_I^{(f)} = -\frac{1}{2}C_U, C_I^{(d)} = 0.$$
(16)

And in CSM the color factor of the heavy quark-antiquark pair to the FSI:

$$C_{F_c}^{(f)} = C_{F_c}^{(d)} = 0. (17)$$

Estimates for the transverse single-spin asymmetries in $p^{\top}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Including ISI and FSI – Color Gauge Invariant formulation of GPM

Coefficient function for ICEM within the CGI-GPM

Figure 3 : Diagrams for contributions to the numerator of TSSA in CGI-GPM: FSI for $gg \rightarrow c\bar{c}$ -process with both final-state quarks tagged.

In case of CGI-GPM factorization, the numerator of the TSSA has the form:

$$F_{1T}^{g(f)} \otimes \hat{\sigma}_{CGI}^{(f)}(\hat{s}, gg \to c\bar{c}) + F_{1T}^{g(d)} \otimes \hat{\sigma}_{CGI}^{(d)}(\hat{s}, gg \to c\bar{c}),$$
(18)

where $\hat{\sigma}_{CGI}^{(f/d)}(\hat{s}, gg \to c\bar{c})$ is the f/d-type coefficient function of CGI-GPM integrated over phase-space of final-state $c\bar{c}$ -pair with fixed invariant mass \hat{s} . The f/d-type hard-scattering coefficients thus obtained have the form:

$$\begin{split} H_{CGI}^{(f)}(gg \to c\bar{c}) &= \frac{8\pi^2 \alpha_s^2}{N_c \left(N_c^2 - 1\right) \tilde{t}^2 \tilde{u}^2} \left(4m_c^4 (\tilde{t} + \tilde{u})^2 + 4m_c^2 \tilde{t} \tilde{u} (\tilde{t} + \tilde{u}) - \tilde{t} \tilde{u} \left(\tilde{t}^2 + \tilde{u}^2\right)\right), \\ H_{CGI}^{(d)}(gg \to c\bar{c}) &= N_c \frac{\tilde{t} - \tilde{u}}{\hat{s}} H_{CGI}^{(f)}(gg \to c\bar{c}), \\ H_{CGI}(q\bar{q} \to c\bar{c}) &= -H_{CGI}(\bar{q}q \to c\bar{c}) = \frac{8\pi^2 \alpha_s^2 (N_c^2 + 1)}{\hat{s}^2 N_c^2} \left(2m_c^2 \hat{s} + \tilde{t}^2 + \tilde{u}^2\right), \\ \text{where } \tilde{t} = \hat{t} - m_c^2 \text{ and } \tilde{u} = \hat{u} - m_c^2. \end{split}$$

Estimates for the transverse single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA Generalized Parton Model (GPM) and it's application to calculation of TSSA Including ISI and FSI – Color Gauge Invariant formulation of GPM

Cross sections for ICEM within the CGI-GPM

Figure 4 : Diagrams for contributions to the numerator of TSSA in CGI-GPM: FSI for $gg \rightarrow c\bar{c}$ -process with both final-state quarks tagged.

Integrating this coefficient-functions over the phase-space of the final-state with fixed $c\bar{c}$ invariant-mass \hat{s} one obtains:

$$\hat{\sigma}_{CGI}^{(f)}(\hat{s}, gg \to c\bar{c}) = \frac{\pi \alpha_S^2}{48\hat{s}} \left[\left(\frac{w^2}{2} - w - 1\right) \ln\left(\frac{1 - w/2 + \sqrt{1 - w}}{1 - w/2 - \sqrt{1 - w}}\right) + 2(1 + w)\sqrt{1 - w} \right] (19)$$

$$\hat{\sigma}_{CGI}^{(d)}(\hat{s}, gg \to c\bar{c}) = 0, \tag{20}$$

$$\hat{\sigma}_{CGI}(\hat{s}, q\bar{q} \to c\bar{c}) = \frac{10\pi\alpha_S^2}{27\hat{s}} \left(1 + \frac{w}{2}\right)\sqrt{1 - w},\tag{21}$$

where $w = 4m_c^2/\hat{s}$.

Estimates for the transverse single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA TSSA in charmonium production at RHIC and NICA

TSSA in charmonium production at RHIC and NICA

TSSA in charmonium production at RHIC and NICA Numerical results. Comparison to PHENIX data

PHENIX-2012 data, $|y| \le 0.35$, $\sqrt{S} = 200$ GeV.

Figure 5 : Differential cross-section of prompt J/ψ production as function of transverse momentum at $\sqrt{s} = 200 \text{ GeV}$, $|y| \leq 0.35$. The theoretical results are obtained in GPM with $\langle q_T^2 \rangle = 1 \text{ GeV}^2$. Left panel: NRQCD-factorization prediction with only color-singlet channels included. Right panel: ICEM-prediction. In the left panel, non-zero contributions from decays $\chi_{c0} \to J/\psi$ and $\psi(2S) \to J/\psi$ are not shown. Experimental data are from the Ref. [A. Adare *et al.* [PHENIX], Phys. Rev. D **85**, 092004 (2012)].

PHENIX-2012 data, $|y| \le 0.35$, $\sqrt{S} = 200$ GeV.

Table 1 : The relative contributions of direct and feed-down production within NRQCD and ICEM. Experimetal data of the PHENIX collaboration for $\sqrt{s} = 200$ GeV are from [A. Adare *et al.* [PHENIX], Phys. Rev. D **85**, 092004 (2012)].

\sqrt{s}	Model/Source of data	$\sigma^{\text{direct}}: \sigma^{\chi_c \to J/\psi}: \sigma^{\psi(2S) \to J/\psi}$
$24 \mathrm{GeV}$	NRQCD	0.58:0.39:0.03
	ICEM	0.68: 0.25: 0.07
$200 { m GeV}$	NRQCD	0.61: 0.34: 0.05
	ICEM	0.61: 0.30: 0.09
200 GeV	PHENIX collab.	0.58: 0.32: 0.10

Table 2 : The values of hadronization probabilities of ICEM, which had been obtained via the fit of total cross-section of J/ψ -production at PHENIX. The fit of LHC data are taken from [V. Cheung and R. Vogt, Phys. Rev. D **98**, 114029 (2018)].

$F_{\mathcal{C}}$	Our fit	The fit of LHC data
$F_{J/\psi}$	0.02	0.02
$F_{\chi_{c1}}$	0.06	0.18
$F_{\chi_{c2}}$	0.06	0.2
$F_{\psi'}$	0.08	0.12

TSSA in charmonium production at RHIC and NICA Numerical results. Comparison to PHENIX data

PHENIX-2018 data, $1.2 \le |y| \le 2.2, \sqrt{S} = 200$ GeV.

Figure 6: TSSA $A_N^{J/\psi}$ as function of x_F at $\sqrt{s} = 200$ GeV within the GPM (thin histograms) and CGI-GPM (thick histograms). The theoretical results are obtained with SIDIS1 (dashed histograms) and D'Alesio *et al.* (solid histograms) parameterizations of GSFs. Left panel: NRQCD final-state factorization. Right panel: ICEM final-state factorization. Experimental data are from Ref. [C. Aidala *et al.* [PHENIX], Phys. Rev. D **98**, 012006 (2018)].

Estimates for the transverse single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA TSSA in charmonium production at RHIC and NICA

Numerical results. Comparison to PHENIX data

PHENIX-2018 data, $-2.2 \le y \le -1.2, \sqrt{S} = 200$ GeV.

Figure 7: TSSA $A_N^{J/\psi}$ as function of J/ψ -transverse momentum in backward region of rapidity at $\sqrt{s} = 200$ GeV within the GPM (thin histograms) and CGI-GPM (thick histograms). The theoretical results are obtained with SIDIS1 (dashed histograms) and D'Alesio *et al.* (solid histograms) parameterizations of GSFs. Left panel: NRQCD final-state factorization. Right panel: ICEM final-state factorization. Experimental data are from Ref. [C. Aidala *et al.* [PHENIX], Phys. Rev. D **98**, 012006 (2018)].

Estimates for the transverse single-spin asymmetries in $p^{\uparrow}p \rightarrow J/\psi X$ process at PHENIX RHIC and SPD NICA TSSA in charmonium production at RHIC and NICA

Numerical results. Comparison to PHENIX data

PHENIX-2018 data, $1.2 \le y \le 2.2$, $\sqrt{S} = 200$ GeV.

Figure 8: TSSA $A_N^{J/\psi}$ as function of J/ψ -transverse momentum in forward region of rapidity at $\sqrt{s} = 200$ GeV within the GPM (thin histograms) and CGI-GPM (thick histograms). The theoretical results are obtained with SIDIS1 (dashed histograms) and D'Alesio *et al.* (solid histograms) parameterizations of GSFs. Left panel: NRQCD final-state factorization. Experimental data are from Ref. [C. Aidala *et al.* [PHENIX], Phys. Rev. D **98**, 012006 (2018)].

Predictions for NICA (in different models), $|y| \leq 3$, $\sqrt{S} = 24$ GeV.

Figure 9: Prompt J/ψ transverse momentum distribution at $\sqrt{s} = 24$ GeV, $|y| \leq 3$. Left panel: GPM results with $\langle q_T^2 \rangle = 1$ GeV² are shown by dash-dotted (NRQCD) and dash-double-dotted (ICEM) histograms. Solid and dashed histograms with uncertainty bands are PRA [A.V. Karpishkov, M.A. Nefedov and V.A. Saleev, J. Phys. Conf. Ser. **1435**, 012015 (2020)] and NLO CPM [M. Butenschön and B.A. Kniehl, private communication] predictions respectively. Right panel: GPM predictions in NRQCD (solid histogram with light green uncertainty band) and ICEM (dashed histogram with dark-green uncertainty band) approaches with their uncertainty bands shown.

17/26

Predictions for TSSA at NICA (D'Alesio), $|y| \leq 3$, $\sqrt{S} = 24$ GeV.

Figure 10 : Comparison of predictions for TSSA $A_N^{J/\psi}$ as function of x_F at $\sqrt{s} = 24$ GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. Left panel: GPM-prediction. Right panel: CGI-GPM-prediction. The D'Alesio *et al.* parametrisation of GSFs is used.

Predictions for TSSA at NICA (D'Alesio), $|y| \leq 3$, $\sqrt{S} = 24$ GeV.

Figure 11: Comparison of predictions for TSSA $A_N^{J/\psi}$ as function of p_T at $\sqrt{s} = 24$ GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. Left panel: GPM-prediction. Right panel: CGI-GPM-prediction. The D'Alesio *et al.* parametrisation of GSFs is used.

Predictions for TSSA at NICA (SIDIS1), $|y| \leq 3$, $\sqrt{S} = 24$ GeV.

Figure 12 : Comparison of predictions for TSSA $A_N^{J/\psi}$ as function of x_F at $\sqrt{s} = 24$ GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. Left panel: GPM-prediction. Right panel: CGI-GPM-prediction. The SIDIS1 parametrisation of GSFs is used.

Predictions for TSSA at NICA (SIDIS1), $|y| \leq 3$, $\sqrt{S} = 24$ GeV.

Figure 13 : Comparison of predictions for TSSA $A_N^{J/\psi}$ as function of p_T at $\sqrt{s} = 24$ GeV in NRQCD (solid histogram) and ICEM (dashed histogram) approaches. Left panel: GPM-prediction. Right panel: CGI-GPM-prediction. The SIDIS1 parametrisation of GSFs is used.

Summary

- We have found that taking into account only color-singlet production mechanism, the good description of prompt J/ψ transverse momentum spectra at small $k_{TJ/\psi} < m_{J/\psi}$ can be achieved in GPM. Our NRQCD calculation leads to total cross-section ratios of direct and feed-down contributions in good agreement with experimental data.
- The Color Gauge Invariant formulation of the GPM is able to reproduce the expected opposite relative sign of the Sivers asymmetries, due to the effects of FSIs and ISIs.
- We also see sizeable differences between NRQCD and ICEM predictions of charmonium TSSA within both GPM and CGI-GPM.
- In CGI-GPM within both the frameworks of CSM and ICEM the process $p^{\uparrow}p \rightarrow \mathcal{H}X$ of *direct production* of $J/\psi(\psi')$ is sensitive to *f*-type GSF. While the χ_c production within the CSM is sensitive to *d*-type GSF and to *f*-type within the ICEM.

Thank you for your attention!

Backup: an estimation of quark contribution to the TSSA at PHENIX within ICEM

Figure 14 : TSSA $A_N^{J/\psi}$ as function of J/ψ -transverse momentum in forward region of rapidity at $\sqrt{s} = 200$ GeV within the GPM without (left panel) and with (right panel) quark contribution. The theoretical results are obtained with SIDIS1 and D'Alesio *et al.* parameterization of GSFs and ICEM final-state factorization. Experimental data are from Ref. [C. Aidala *et al.* [PHENIX], Phys. Rev. D **98**, 012006 (2018)].

Backup: an estimation of quark contribution to the TSSA at PHENIX within ICEM

Figure 15 : TSSA $A_N^{J/\psi}$ as function of J/ψ -transverse momentum in forward region of rapidity at $\sqrt{s} = 200$ GeV within the CGI-GPM without (left panel) and with (right panel) quark contribution. The theoretical results are obtained with SIDIS1 and D'Alesio *et al.* parameterization of GSFs and ICEM final-state factorization. Experimental data are from Ref. [C. Aidala *et al.* [PHENIX], Phys. Rev. D **98**, 012006 (2018)].

Backup: an estimation of quark contribution to the TSSA at SPD within ICEM

Figure 16: Comparison of predictions for TSSA $A_N^{J/\psi}$ as function of J/ψ -transverse momentum at $\sqrt{s} = 24$ GeV within the GPM without (left panel) and with (right panel) quark contribution. The theoretical results are obtained with SIDIS1 and D'Alesio *et al.* parameterization of GSFs and ICEM final-state factorization.