

Inclusive photoproduction of J/ψ in electron-proton collisions at the Electron-Ion Collider

Yelyzaveta Yedelkina

work done in collaboration with Carlo Flore, Jean-Philippe Lansberg & Hua-Sheng Shao, in IJCLab (Orsay)

Virtual Quarkonia as Tools 2021, March 21-26, 2021

Part I

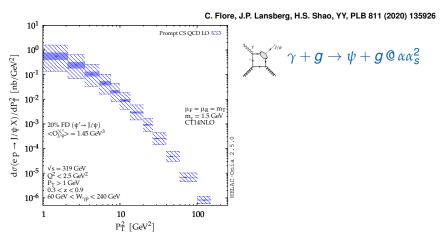
Introducing quarkonium production

See Phys.Rept. 889 (2020) 1-106 and EPJC (2016) 76:107 for reviews

No agreement on which mechanism is dominant

- No agreement on which mechanism is dominant
- Differences in the treatment of the hadronisation

- No agreement on which mechanism is dominant
- Differences in the treatment of the hadronisation
- 3 common models:

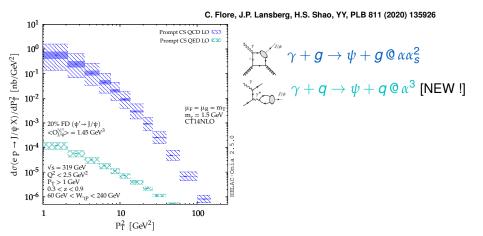

- No agreement on which mechanism is dominant
- Differences in the treatment of the hadronisation
- 3 common models:
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; colour and spin are preserved during the hadronisation

- No agreement on which mechanism is dominant
- Differences in the treatment of the hadronisation
- 3 common models:
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; colour and spin are preserved during the hadronisation
 - NRQCD AND COLOUR OCTET MECHANISM: higher Fock states of the mesons taken into account; QQ can be produced in octet states with different quantum # as the meson;

- No agreement on which mechanism is dominant
- Differences in the treatment of the hadronisation
- 3 common models:
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; colour and spin are preserved during the hadronisation
 - NRQCD AND COLOUR OCTET MECHANISM: higher Fock states of the mesons taken into account; QQ can be produced in octet states with different quantum # as the meson;
 - COLOUR EVAPORATION MODEL: based on quark-hadron duality; only the invariant mass matters; semi-soft gluons emissions; colour-wise decorrelated cc prod. and hadr.

Part II

Photoproduction at mid and high P_T at HERA

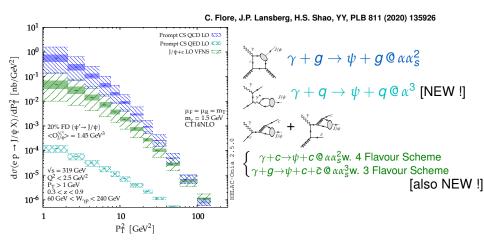


Notes:

All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and solid bands.

H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity to set to zero.

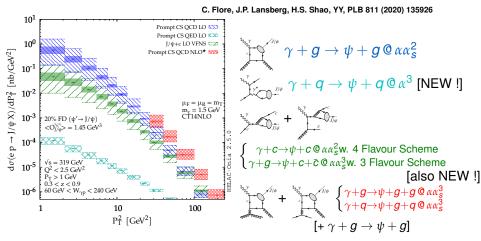


Notes:

All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and solid bands.

H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

The quark and antiquark attached to the ellipsis are taken as on-shell and their relative velocity to set to zero.

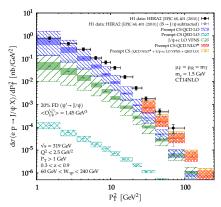


Notes:

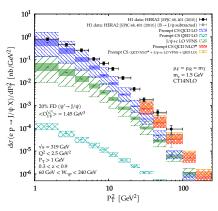
All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and solid bands.

H.S. Shao, CPC198 (2016) 238; See also https://nloacess.in2p3.fr

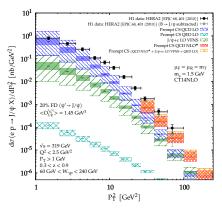
[The quark and antiouark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero.]

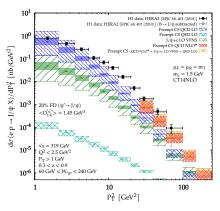


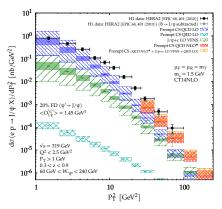
Notes:

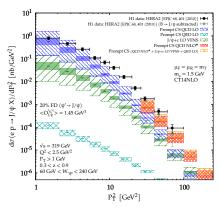

All the computations were done with HELAC-ONIA. The scale and mass uncertainties are shown by the hatched and solid bands. H.S. Shao, CPC198 (2016) 238; See also https://nloaccess.in2p3.fr

The guark and antiguark attached to the ellipsis are taken as on-shell and their relative velocity v is set to zero. NLO * only contains the real-emission contributions with an IR cut-off and is expected to account for the leading P_T contributions at NLO (P_{τ}^{-6}) . It has been successfully checked against full NLO computations for $P_T>3$ GeV.

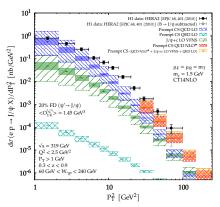

March 22, 2021


C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926


LO QCD : OK at low P_T


- LO QCD : OK at low P_T
- LO QED small but much harder

- LO QCD : OK at low P_T
- LO QED small but much harder
- J/ψ +charm: matter at high P_T

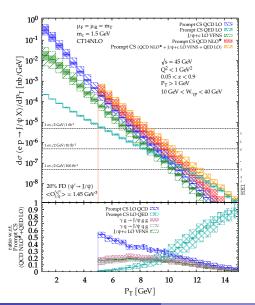


- LO QCD : OK at low P_T
- LO QED small but much harder
- J/ψ +charm: matter at high P_T
- NLO^(*) close the data, the overall sum nearly agrees with them

- LO QCD : OK at low P_T
- LO QED small but much harder
- J/ψ +charm: matter at high P_T
- NLO^(*) close the data, the overall sum nearly agrees with them
- Agreement with the last bin when the expected B → J/ψ feed down (in gray) is subtracted

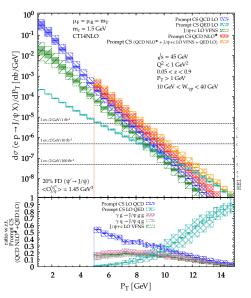
C.Flore, JP Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

- LO QCD : OK at low P_T
- LO QED small but much harder
- J/ψ +charm: matter at high P_T
- NLO^(*) close the data, the overall sum nearly agrees with them
- Agreement with the last bin when the expected $B \rightarrow J/\psi$ feed down (in gray) is subtracted

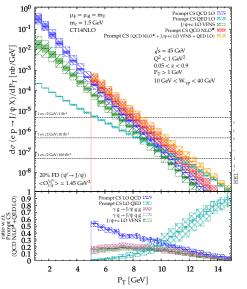

The CSM up to $\alpha \alpha_s^3$ reproduces photoproduction at HERA

→ we will restrict to CSM for our EIC predictions

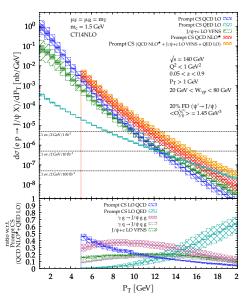
Part III


Photoproduction at mid and high P_T at the Electron-Ion Collider

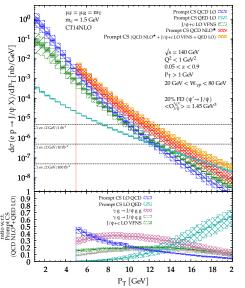
C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926


• At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region

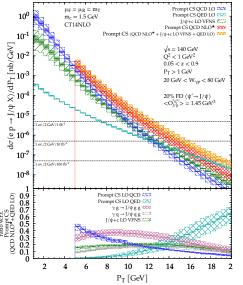
C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

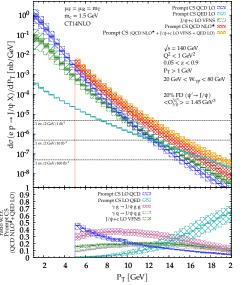

- At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region
- Yield steeply falling with P_T
- Yield can be measured up to $P_T \sim 11 \text{ GeV}$ with $\mathcal{L} = 100 \text{ fb}^{-1}$

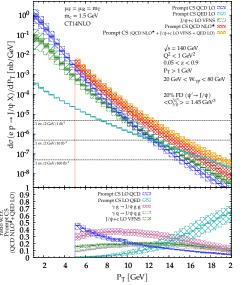
[using both *ee* and $\mu\mu$ decay channels and $\varepsilon_{J/\psi} \simeq 80\%$]

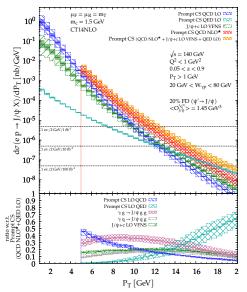


- At $\sqrt{s_{ep}} = 45$ GeV, one gets into valence region
- Yield steeply falling with P_T
- Yield can be measured up to $P_T \sim 11~{
 m GeV}$ with ${\cal L}=100~{
 m fb}^{-1}$ [using both ee and $\mu\mu$ decay channels and $\varepsilon_{J/\psi} \simeq 80\%$]
- QED contribution leading at the largest reachable P_T
- photon-quark fusion contributes more than 30 % for P_T > 8 GeV


C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926


• At $\sqrt{s_{ep}} = 140 \text{ GeV}$, larger P_T range up to approx. 18 GeV


- At $\sqrt{s_{ep}} = 140$ GeV, larger P_T range up to approx. 18 GeV
- QED contribution also leading at the largest reachable P_T
- photon-gluon fusion contributions dominant up to approx. 15 GeV

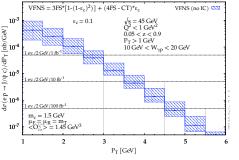

- At $\sqrt{s_{ep}} = 140$ GeV, larger P_T range up to approx. 18 GeV
- QED contribution also leading at the largest reachable P_T
- photon-gluon fusion contributions dominant up to approx. 15 GeV
- $J/\psi + 2$ hard partons [i.e. $J/\psi + \{gg, qg, c\bar{c}\}$] dominant for $P_T \sim 8 15$ GeV

- At $\sqrt{s_{ep}} = 140$ GeV, larger P_T range up to approx. 18 GeV
- QED contribution also leading at the largest reachable P_T
- photon-gluon fusion contributions dominant up to approx. 15 GeV
- $J/\psi+2$ hard partons [i.e. $J/\psi+\{gg,qg,c\bar{c}\}$] dominant for $P_T\sim 8-15$ GeV
- It could lead to the observation of $J/\psi + 2$ jets with moderate P_T^{jet}

- At $\sqrt{s_{ep}} = 140$ GeV, larger P_T range up to approx. 18 GeV
- QED contribution also leading at the largest reachable P_T
- photon-gluon fusion contributions dominant up to approx. 15 GeV
- $J/\psi+2$ hard partons [i.e. $J/\psi+\{gg,qg,c\bar{c}\}$] dominant for $P_T\sim 8-15~{
 m GeV}$
- It could lead to the observation of J/ψ + 2 jets with moderate P_T^{jet}
- with a specific topology where the leading jet₁ recoils on the J/ψ+ jet₂ pair

- At $\sqrt{s_{ep}} = 140$ GeV, larger P_T range up to approx. 18 GeV
- QED contribution also leading at the largest reachable P_T
- photon-gluon fusion contributions dominant up to approx. 15 GeV
- $J/\psi+2$ hard partons [i.e. $J/\psi+\{gg,qg,c\bar{c}\}$] dominant for $P_T\sim 8-15~{
 m GeV}$
- It could lead to the observation of $J/\psi + 2$ jets with moderate P_T^{jet}
- with a specific topology where the leading jet₁ recoils on the J/ψ + jet₂ pair
- We expect the $d\sigma$ to vanish when $E_{\rm into}^{J/\psi \; {
 m rest \; fr.}}
 ightarrow 0$

Part IV

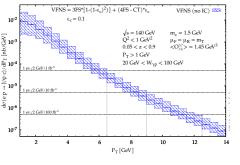

 $J/\psi+$ charm associated production at the EIC

9/11

J/ψ +charm associated production at the EIC

J/ψ +charm associated production at the EIC

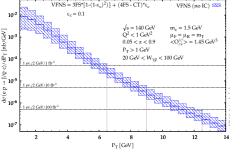
C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926



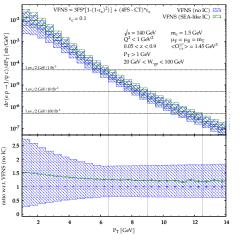
• Same LO VFNS computation previously shown in green except for the charm-detection efficiency ϵ_c : VFNS =

$$3FS \times (1 - (1 - \epsilon)^2) + (4FS - CT) \times \epsilon$$

• At $\sqrt{s_{ep}} = 45$ GeV, yield limited to

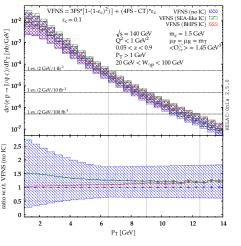

- low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$ But it is clearly observable if
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹

J/ψ +charm associated production at the EIC


- Same LO VFNS computation previously shown in green except for the charm-detection efficiency $\epsilon_{\mathcal{C}}$: VFNS =
- $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$ • At $\sqrt{s_{ep}} = 45$ GeV, yield limited to
- low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$ But it is clearly observable if $\epsilon_c = 0.1 \text{ with } \mathcal{O}(500, 50, 5) \text{ events}$ for $\mathcal{L} = (100, 10, 1) \text{ fb}^{-1}$
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet

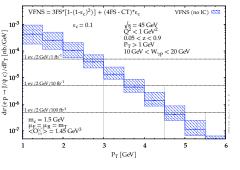
C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ϵ_C : VFNS = $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$
- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c o J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm


C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ϵ_C : VFNS = $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$
- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c o J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

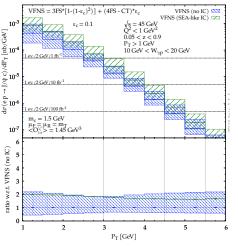
[We used IC c(x) encoded in CT14NNLO]


C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ϵ_C : VFNS = $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$
- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c
 ightarrow J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

[We used IC c(x) encoded in CT14NNLO]

C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926



- Same LO VFNS computation previously shown in green except for the charm-detection efficiency $\epsilon_{\mathcal{C}}$: VFNS =
- $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$ • At $\sqrt{s_{ep}} = 45$ GeV, yield limited to
- low P_T even with $\mathcal{L} = 100 \text{ fb}^{-1}$ But it is clearly observable if
- $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c o J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$

[We used IC c(x) encoded in CT14NNLO]

• Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$


C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ϵ_C : VFNS = $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$
- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- 4FS $\gamma c \rightarrow J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at √sep = 140 GeV
 Measurable effect at √sep = 45 GeV

[We used IC c(x) encoded in CT14NNLO]

C. Flore, J.P. Lansberg, H.S. Shao, YY, PLB 811 (2020) 135926

- Same LO VFNS computation previously shown in green except for the charm-detection efficiency ϵ_C : VFNS = $3FS \times (1 (1 \epsilon)^2) + (4FS CT) \times \epsilon$
- At $\sqrt{s_{ep}} = 45$ GeV, yield limited to low P_T even with $\mathcal{L} = 100$ fb⁻¹
- But it is clearly observable if $\epsilon_c = 0.1$ with $\mathcal{O}(500, 50, 5)$ events for $\mathcal{L} = (100, 10, 1)$ fb⁻¹
- At $\sqrt{s_{ep}} = 140$ GeV, P_T range up to 10 GeV with up to thousands of events with $\mathcal{L} = 100$ fb⁻¹
- Could be observed via charm jet
- ullet 4FS $\gamma c o J/\psi c$ depend on c(x) and could be enhanced by intrinsic charm
- Small effect at $\sqrt{s_{ep}} = 140 \text{ GeV}$ [We used IC c(x) encoded in CT14NNLO] • Measurable effect at $\sqrt{s_{ep}} = 45 \text{ GeV}$: BHPS valence-like peak visible!

• No agreement on the quarkonium-inclusive-production mechanisms

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

• CSM can describe the latest HERA photoproduction data Agreement improved when accounting for J/ψ +charm and B FD contributions

- No agreement on the guarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

• I have presented the first QCD-correction study to inclusive J/ψ

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for J/ψ +charm and B FD contributions
- photoproduction at the EIC

[for leptoproduction ($Q^2 \neq 0$) see J.W. Qiu et al. 2005.10832 and the previous talk by X.P. Wang]

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for $J/\psi+$ charm and B FD contributions
- I have presented the first QCD-correction study to inclusive J/ψ photoproduction at the EIC
 - [for leptoproduction ($Q^2 \neq 0$) see J.W. Qiu et al. 2005.10832 and the previous talk by X.P. Wang]
- $\sqrt{s_{ep}} = 140 \text{ GeV}$,
 - gluon-quark QED contribution [new!] leading at high P_T
 - gluon-fusion mostly dominant
 - ▶ J/ψ +charm jet accessible
 - $J/\psi + 2$ jets accessible

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for $J/\psi+$ charm and B FD contributions
- I have presented the first QCD-correction study to inclusive J/ψ photoproduction at the EIC [for leptoproduction ($Q^2 \neq 0$) see J.W. Qiu et al. 2005.10832 and the previous talk by X.P. Wang]
- $\sqrt{s_{ep}} = 140 \text{ GeV}$,
 - gluon-quark QED contribution [new!] leading at high P_T
 - gluon-fusion mostly dominant
 - ▶ J/ψ +charm jet accessible
 - $J/\psi + 2$ jets accessible
- $\sqrt{s_{ep}} = 45 \text{ GeV}$,
 - ▶ gluon-quark QED contribution [new!] leading at high P_T
 - J/ψ +charm sensitive to charm PDFs

- No agreement on the quarkonium-inclusive-production mechanisms
- For quarkonium production, QCD corrections with P_T-enhanced topologies are known to be important

We have revisited J/ψ photoproduction at HERA

- CSM can describe the latest HERA photoproduction data Agreement improved when accounting for $J/\psi+$ charm and B FD contributions
- I have presented the first QCD-correction study to inclusive J/ψ photoproduction at the EIC [for leptoproduction ($Q^2 \neq 0$) see J.W. Qiu et al. 2005.10832 and the previous talk by X.P. Wang]
- $\sqrt{s_{ep}} = 140 \text{ GeV}$,
 - gluon-quark QED contribution [new!] leading at high P_T
 - gluon-fusion mostly dominant
 - ▶ J/ψ +charm jet accessible
 - ▶ $J/\psi + 2$ jets accessible
- $\sqrt{s_{ep}} = 45 \text{ GeV}$,
 - ▶ gluon-quark QED contribution [new!] leading at high P_T
 - ▶ J/ψ +charm sensitive to charm PDFs

Thank you for attention!