

Quarkonia as Tools 2021

X(3872) Production and Suppression

(in pp collisions)

Kevin Ingles ingles.27@buckeyemail.osu.edu
The Ohio State University

My gratitude to Eric Braaten and Liping He for extensive feedback

General overview

• Brief review of *X*(3872)

• Production of X(3872) at hadron colliders

• Suppression of X(3872)

Brief Review of X(3872)

- Discovered at e^+e^- collider in $B^+ \to K^+X$, $X \to J/\psi \pi^+\pi^-$ [Belle (2003)]
- Confirmed at $p\bar{p}$ collider [CDF (2003)]
- Observed at pp collider [ATLAS (2013), CMS (2011), LHCb (2011)]
- Most precise mass and first width [LHCb (2020)]: $M_X = 3871.695 \pm 0.096$ MeV, $\Gamma_X^{BW} = 1.19 \pm 0.19$ MeV
- 7 observed decay channels
 - $J/\psi \pi^+ \pi^-$ [Belle (2003)]
 - $J/\psi \pi^+ \pi^- \pi^0$ [BaBar (2010)]
 - $J/\psi\gamma$ [BaBar (2006)]
 - $\psi(2S)\gamma$ [BaBar (2009)]

- $D^0 \overline{D}{}^0 \pi^0$ [Belle (2006)]
- $D^{0}\overline{D}^{0}\gamma$ [Belle (2010)]
- $\chi_{c1}\pi^0$ [BESIII (2019)]

Brief Review of X(3872)

• Tiny binding energy [LHCb (2020)]:

$$E_X = M_X - (M_{D^{*0}} + M_{\overline{D}^0}) = -0.07 \pm 0.12 \text{ MeV}$$

- Quantum numbers: $J^{PC} = 1^{++}$ [LHCb (2013)]
- Imply X(3872) is S-wave loosely-bound charm-meson molecule

$$X = \frac{1}{\sqrt{2}} (|D^{*0}\overline{D}^{0}\rangle + |\overline{D}^{*0}D^{0}\rangle)$$

• Universal properties determined by binding energy E_X (or scattering length $a_X = 1/\gamma_X$) [Braaten, Kusunoki (2003)]

$$|E_X| < 0.22 \text{ MeV at } 90\% \text{ C.L.}$$
 $\gamma_X = \sqrt{2\mu_{D^*\overline{D}}|E_X|} < 21 \text{ MeV}$

Wavefunction:

$$\psi_{X(r)} = \frac{1}{\sqrt{8\pi\gamma_X}} \, \frac{e^{-\gamma_X r}}{r}$$

Huge mean separation:

$$\langle r \rangle_X = \frac{1}{2\gamma_X} > 4.5 \text{ fm}$$

Brief Review of X(3872)

- Other possibilities for X [Ali, Lange, Stone (2017)]:
 - Cusp: discontinuity in differential cross section across threshold
 - Hadroquarkonia: heavy charmonium core $c\bar{c}$ surrounded by light meson $q\bar{q}$ bound by QCD analog of van der Waals force
 - Hybrid: combination of heavy quarks and a constituent gluon
 - Compact tetraquark: diquark and anti-diquark bound by color interactions
 - Charmonium: $\chi_{c1}(2P)$
- Regardless, the coupling of X to $D^{*0}\overline{D}{}^{0}$ transforms it into a large charm-meson molecule
- Production and suppression mechanisms help to determine X true nature

- Two contributions at hadron colliders
 - Prompt production $pp \rightarrow X$ + anything
 - *b* hadron decays
- Convenient to benchmark X(3872) against $\psi(2S) = \psi(3686)$
 - Both are observed in $J/\psi \pi^+\pi^-$ channel
 - They have similar masses
- Field theoretic tools include
 - Non-relativistic QCD [Bodwin, Braaten, Lepage (1995)]
 - Potential Non-relativistic QCD [Brambilla, et al. (2000)]
 - XEFT [Fleming, et al. (2007)][Braaten (2015)]

- Cross section for creating X related to cross section for creating $c\bar{c}$ at short distances through Long Distance Matrix Elements (LDMEs)
- [Meng, Han, Chao (2017)] calculate p_T -distribution assuming production of X at short distances dominated by $\chi_{c1}(2P)$ state
- LDMEs at NLO in NRQCD:
 - $\widehat{O}^{\chi'_{c1}}\left(3S_1^{[8]}\right)$: from fits
 - $\widehat{O}^{\chi'_{c1}}\left(3P_1^{[1]}\right)$: related to $\chi_{c1}(2P)$ wavefunction at origin
 - Normalization factor $k = Z_{c\bar{c}} {\rm Br}(X \to J/\psi \pi^+ \pi^-)$, where $Z_{c\bar{c}}$ is probability $\langle \chi'_{c1} | X \rangle$

$$k = 0.014$$

• [Bignamini *et al.* (2009)] If X is a loosely bound charm-meson molecule with relative mom k $\sigma[X] = \sigma[D^{*0}\overline{D}^{0}(k < k_{max})]$ $k_{max} \approx \gamma_{X}, \qquad \gamma_{X} = \sqrt{2\mu_{D^{*0}\overline{D}^{0}}|E_{X}|}$

- Calculated $\sigma[D^{*0}\overline{D}{}^{0}]$ using event generator Pythia and Herwig
- Weak lower bound on $p \bar{p}$ collisions from CDF at Tevatron

$$\sigma[X] \text{Br}[X \to J \psi \pi^+ \pi^-] > 3.1 \pm 0.7 \text{ nb}$$

 Observed cross section at Tevatron and LHC are orders of magnitude too large

• [Artoisenet, Braaten (2010)] If X is a loosely bound charm meson molecule with relative mom k

$$\begin{split} \sigma[X] &= \sigma[D^{*0}\overline{D}^0(k < k_{max})] \\ \sigma[D^{*0}\overline{D}^0(k < k_{max})] &\propto k_{max}^3, \quad k_{max} \approx m_{\pi} \end{split}$$

- Calculated $\sigma[D^{*0}\overline{D}{}^{0}]$ using event generator Pythia
- [Braaten, He, Ingles (2019)] Quantitative estimate on k_{max}

$$\sigma[X] = \sigma[D^{*0}\overline{D}^{0}](k < 7.7\gamma_{X})$$
$$\gamma_{X} = \sqrt{2\mu_{D^{*0}\overline{D}^{0}}|E_{X}|}$$

Note: $7.7^3 \approx 500$

 Observed prompt cross sections for X are compatible with with charm-meson molecule

• Production of X can come from creation of $\overline{D}{}^0D^{*0}$, $D^0\overline{D}{}^{*0}$ at short distances

• Production of $X\pi^+$ with soft π can come from creation of $D^{*+}\overline{D}^{*0}$ at short distances

• Triangle singularity in process $D^{*+}\overline{D}^{*0} \to X\pi^{+}$ gives peak about 6 MeV above $X\pi^{+}$

threshold with width < 1 MeV

 Charm-meson triangle loop ⇒ triangle singularity

• Decay width of D^* and binding energy of X reduce \log^2 -divergence to narrow peak

Suppression of X(3872)

Suppression of X(3872)

- Proton-proton collision:
 - Interactions with comoving gluons and pion Comover Interaction Model [Ferreiro (2015)]
- Proton-nucleus collision:
 - Interactions with comoving gluons and pions
 - Cold nuclear matter effects: PDFs of p and n, nuclear shadowing, absorption by nucleons etc. [e.g. Vogt (2015)]
- Nucleus-Nucleus collision:
 - Interactions with comoving gluons and pions
 - Cold nuclear matter effects
 - Thermal effects in quark-gluon plasma [e.g. Rothkopf (2020)]
 - Thermal effects in expanding, cooling hadron gas

Suppression of X(3872) in pp collisions

• [LHCb (2021)] measured X and ψ' yields as functions of hadron multiplicity

- Prompt fractions for X and ψ' decrease with multiplicity
- Prompt fraction for ψ' saturates at large multiplicity

Suppression of X(3872) in pp collision

Survival probability in CIM [Armesto, Capella (1998)]

$$S = \exp\left[-\frac{\langle v\sigma\rangle}{\sigma_0}\frac{dN}{dy}\log\left(\frac{1}{N_0}\frac{dN}{dy}\right)\right] \quad \begin{array}{l} N_0: \text{ multiplicity at which interactions stop} \\ \sigma_0: \text{ parameter that depends COM energy} \end{array}$$

Model for breakup reaction rate and momentum distribution for comovers

[Ferreiro, Lansberg (2018)]

$$\langle v\sigma \rangle = \pi r^2 \left\langle 1 - \frac{E^{thr}}{E_{co}} \right\rangle;$$

 r^2 : RMS mean separation of constituents

 E^{thr} : energy required to break X apart

 E_{co} : pion(gluon) relativistic energy

$$f(E_{co}) = \left(e^{E_{co}/T_{eff}} - 1\right)^{-1}$$

$$200 < T_{eff} < 300 \text{ MeV}$$

Suppression of X(3872) in pp collisions

- [Esposito, et al. (2020)] estimated X/ψ' ratio assuming
 - *X* as a tightly bound tetraquark
 - X as charm-meson molecule
 - X as charm-meson molecule and with process $\pi \overline{D} D^* \to X$ and $\pi D^* \overline{D}^* \to X \pi$
- Estimation done using MC Glauber modeling
 - Generate realistic particle distribution
 - *X* can only interact with comovers within range
- Estimation shows that CIM favors tetraquark interpretation
- Simply plugging in numbers for survival probability gives poor agreement

Suppression of X(3872) in pp collisions

- From LHCb data, prompt fraction for ψ' saturates at large multiplicity
- Assumption: prompt cross section is sum of
 - ullet term with survival probability S and term with survival probability 1

$$S\left(\frac{dN}{dy}\right) = \exp\left[-\frac{\langle v\sigma \rangle}{\sigma_0} \frac{dN}{dy} \log\left(\frac{1}{N_0} \frac{dN}{dy}\right)\right]$$

• 26 data points 7 fitting parameters $\chi^2/\text{dof} = 0.99$

• X as a charm-meson molecule can reproduce LHCb data if

$$\langle v\sigma \rangle_X \sim 2.6 \pm 0.7 \text{ mb}$$

Summary

• Still no consensus on nature of X(3872)

• Studying production and suppression will help resolve X(3872) nature

- Theory tools for understanding suppression of X(3872):
 - Comover Interaction Model, Cold nuclear matter effects...

