Open quantum systems for quarkonium dynamics

Stéphane Delorme

virtual Quarkonia As Tools 2021

Collaborators:

- Pol-Bernard Gossiaux (Ph.D supervisor)
- Thierry Gousset (Ph.D supervisor)
- Roland Katz (Post-doc)

troduction 1D QME

Quarkonium in heavy-ion collisions

Static screening

 $T \neq 0 \rightarrow Suppression of color attraction$

Melting of pairs at high T

⇒ Suppression

Dynamical screening

Dynamical processes (collisions...)

- \rightarrow Pair dissociation
- ⇒ Suppression

Described by an imaginary potential

Quarkonium in heavy-ion collisions

Recombination

Initially uncorrelated heavy quarks form a quarkonium

Can happen below the dissociation temperature

Essential to have a formalism that can treat this effect

ntroduction 1D QME

Theoretical models

- Statistical Recombination:
 - Quasi-stationnary medium
 - QQ dissociated
 - Recombination at freeze-out

- Transport:
 - Based on dilute medium approximation
 - Transition rates given by cross-sections
 - Cross-sections can't treat everything

- Open Quantum Systems:
 - Allow to treat screening and recombination
 - Dynamic medium
 - Recombination of cc̄ still problematic
 - ⇒ Semi-classical approximations

Need to understand the domain of validity of semi-classical approximations

troduction 1D QME

Open quantum systems

ntroduction 1D QME

Overwiew of open quantum systems studies

3D Quantum Master Equation

J.P. Blaizot, M.A. Escobedo, J. High Energy Phys. 06 (2018) 034.

- Weak coupling between heavy quarks and plasma particles
- Resolved through a semi-classical approximation
- Pioneering work on the use of semi-classical approximations to be explored

3D Quantum Master Equation

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

 \mathcal{L}_0 : Kinetic terms

 \mathcal{L}_1 : Static screening (V)

 \mathcal{L}_2 : Fluctuations (W)

 \mathcal{L}_3 : Dissipation (W'/W")

Singlet⇔octet, octet⇔octet transitions and dissipation effects

Complex potential V + iW

Derived from HTL perturbation theory

M. Laine, O. Philipsen, P. Romatschke, M. Tassler

A. Beraudo, J.P. Blaizot, C. Ratti

In our case:

V: 1D linear potential with T-dependent screening

W: 1D HTL-inspired potential

Our work

GOAL: Resolve the equations in the 1D case to gain insight on the dynamics

LAST YEAR: Only partial results, with only the singlet-singlet terms.

NOW: Equations fully resolved

Positivity preserved (not the case in the original equations)

We have now a robust tool to explore the dynamics

Results for the charmonium system only

1D equations resolution: State probabilities

- ▶ 1S-like initial state
- Transient phase: re-equilibration
- Same late-time evolution for S-like states at a given temperature
- Higher suppression at higher temperatures

1D equations resolution: Singlet density operator

Dissociated component

Bound core to be studied Quantum coherences?
Initial state remnant?

More realistic initial state

▶ 1P-like octet initial state

 Interplay between binding, diffusion and transitions between states

More realistic initial state

Central core forms rapidly and then slowly vanishes

Dissociated octet component

Conclusion & Perspectives

- Open quantum systems formalism widely used to study quarkonium dynamics
- ▶ We have a fully functionnal tool to explore the 1D dynamics
- Semi-classical approximations may be valid, but further investigations required
- Further study the validity of semi-classical approximations
- Implement a more realistic 1D potential
- Add a realistic temperature dependence
- Study the bottomonium system
- Go to 3D