

Investigating the J/ψ flow

Sébastien Perrin (CEA Saclay, DPhN)

Forming the QGP and studying it

cea

Study of Quark-Gluon Plasma (QGP)

- Deconfined state of matter
- Freely-roaming color charges

Formation through Heavy-ion collisions

Pb-Pb ⇒ Formation of QGP Pb-p, p-p ⇒ Reference (Cold Nuclear Matter (CNM) effects, assume no QGP formation)

What to look at?

Focus on quarkonium $(Q\bar{Q})$

Formed before the QGP
Influenced by color charges
Insight on QGP properties (e.g. Temperature)

What is flow?

In Heavy-ion collisions, anisotropic collision region

- > Anisotropies in momentum distribution
- ➤ Long-range correlations of produced particles

Taken from Universe, 2017

[arXiv:nucl-ex/9805001]

Azimuthal correlations of particles quantified by Fourier coefficients in ϕ angle distribution (wrt event plane if large multiplicity), or 2-particle correlations (in smaller systems)

$$\frac{dN}{d\phi} = \left\langle \frac{dN}{d\phi} \right\rangle \left(1 + \sum_{n} 2v_n \cos[n(\phi - \Psi_n)] \right)$$

$$\frac{dN^{pairs}}{d\Delta\phi} \propto \left(1 + \sum_{n=1}^{\infty} 2v_n^2 \cos(n\Delta\phi)\right).$$

 v_2 (elliptic) related to the initial geometry of the collision v_3 (triangular) related to fluctuations

Flow is a signature of QGP formation as it shows collective behaviours

Constrains theoretical models

Explaining the J/ψ flow

Final State effects

Flow is **acquired through QGP evolution** (geometry-related)

Two sources for the J/ψ flow:

- (Re)combination of charm quarks (flow inheritence)
 - At freeze-out
 - Dynamic transport model
- Path-length dependent suppression (primary J/ψ)

[Nature **448**, 302–309 (2007)]

A first: PHENIX-STAR (Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}$)

Motivation:

How is the J/ψ produced ? Is it through regeneration ?

Observations:

- v_2 compatible with 0 above 2 GeV/c
- Compatible with initial state and/or transport
- Rules out coalescence at freeze-out

 J/ψ regeneration is not dominant at RHIC

[arXiv:1212.3304] Data from 2010

Pb-Pb, J/ψ regenerates

Pb-Pb ALICE (Run2, inclusive, 5.02 TeV)

Higher energy than RHIC: more c and thermalisation of c

Comparison to transport model (TAMU, X. Du et al.)

(which reproduces nicely R_{AA} behaviour)

Overall behaviour OK-ish:

- Increase at low- p_T (recombined c quarks)
- Decrease at high- p_T (less recombination)
- Non-0 asymptote (only path-length dependence in primordial J/ψ bring a small v_2)

Data (low- p_T) shows that J/ψ regenerates

Bad description of the p_T -dependence at high- p_T

Missing mechanism?

[arXiv:2005.14518]

Pb-Pb, probing further than regeneration

[arXiv:1709.05260, arXiv:2005.14518]

 $v_{2,I/\psi} > 0$ significant at mid- p_T

Species-independent asymptote at high- p_T : common mechanism

- For pions, flow from parton energy loss but J/ψ is colourless
- How can it be explained?
- Mass hierarchy of v_2 and v_3 and similar magnitudes: coherent charm quark thermalisation and hydrodynamics

 $v_{3,J/\psi} > 0$ (> 5σ between 2 and 5 GeV/c in 0-50%) c are sensitive to initial fluctuations: collectivity

The LHC experiments agree

ATLAS (Run2, **prompt**) 5.02 TeV and CMS (Run2, **prompt**) 2.76 TeV

Distinction prompt/non-prompt J/ψ (depending on B feeddown)

Combining results between the experiments shows a nice agreement (despite uncertainties and centrality effects)

Fully confirms the flow of c

[arXiv:1807.05198, arXiv:1610.00613]

So in Pb-Pb: J/ψ regeneration, c flow, validation of hydrodynamics and transport model despite missing mechanism

p-Pb, exploration of smaller systems

ALICE (Run2, inclusive, 5.02 and 8.16 TeV)

- $v_{2,I/\psi} > 0$ (> 5σ) for $3 < p_T < 6$ GeV/c
- Values in p-Pb close to Pb-Pb, suggests common mechanism
- Low- $p_T v_2$ compatible with 0 : barely any recombination in p-Pb
- Should be no sizeable v_2 from path-length dependence

[arXiv:1709.06807]

p-Pb, exploration of smaller systems

CMS (Run2, prompt, 8.16 TeV)

- Prompt $J/\psi v_2 > 0$ on a wide p_T interval
- Vague mass ordering
 - Maybe hydrodynamics do not fully apply?
 - Is there another flow origin?
- Consistent v_2 values and trends between species (esp. D^0 and J/ψ), not the case in Pb-Pb!

[arXiv:1810.01473]

p-Pb, theories of flow

Theoretical models

• Transport model (TAMU, X. Du et al.)

Model way below the experimental data Missing mechanism

Initial state effects – CGC (C. Zhang et al.)

Idea: Flow is here from the start

• Long-range correlations come from initial momentum/color correlations (CGC framework)

Nice agreement with both ALICE and CMS data

[arXiv:1901.10320]

Hints in p-p

- Charged particles v_2 (ATLAS, CMS)
- Similar trend with p-A and A-A collisions
 - Similar mechanism?
- c and b through muon decay (ATLAS)
- b-hadrons v_2 consistent with 0
- c-hadrons $v_2 > 0$. Is c flowing or are only lighter quarks flowing ?

Need to study J/ψ p-p flow to determine if c flows or not!

Conclusions and Outlook

At LHC energies		
A-A	p-Pb	р-р
 c quarks participate in collective effects 	 c quarks participate in collective effects 	 Charged particles show collective effects
• Showed that J/ψ was regenerated from thermalised c quarks	 Common flow mechanism between Pb-Pb and p-Pb 	 Suggest common flow mechanism between all systems
 Flow behaviour follows hydrodynamics and transport model 	Hydrodynamics fragile and transport model fails	• c could flow, need to check by looking at J/ψ flow (work in progress !)
• Missing mechanism at high- p_T to explain J/ψ flow, what is it ?	 What is the origin of flow in p-Pb? 	 Theories in p-p ? May help for flow in bigger systems
 Investigate higher harmonics and their correlations (Run 3 and 4)? 		