Virtual Quarkonia As Tools 2021

Quarkonium production in proton-nucleus collisions at the LHC

Luca Micheletti (INFN Torino)

Quarkonium production at the LHC

Complementarity of all the experiments

LHC offers a unique opportunity to explore quarkonium production in a very wide kinematic range

- Forward & mid rapidity coverage
- Charmonia down to zero p_T
- Bottomonia **down to zero p**_T

- Mid-rapidity coverage
- Charmonia at **high** p_{T}
- Bottomonia **down to zero** p_T

- Wide forward rapidity coverage
- Charmonia **down to zero** p_T
- Bottomonia down to zero p_T

- Mid-rapidity coverage
- Charmonia at **high** p_{T}
- Bottomonia **down to zero p**_T

Overview

In this presentation a selection of the latest LHC results in p-Pb collisions

• J/ ψ production as a function of p_T , y and centrality

JHEP 07 (2018) 160

EPJC 77 (2017) 269

PLB 774 (2017)

JHEP 2009 (2020) 162

 $\psi(2S)$ production as a function of p_T , y and centrality

JHEP 1603 (2016) 133

JHEP 02 (2021) 002

JHEP 07 (2020) 237

EPJC 78 (2018) 171

• $\Upsilon(nS)$ production as a function of p_T , y and centrality

PLB 806 (2020) 135486 WW JHEP 11(2018)194

EPJC 78 (2018) 171

<u>IHEP 04 (2014) 103</u>

Quarkonia as tools 2021 Overview Luca Micheletti

Nuclear modification factor

Nuclear modification factor (R_{AA}): quantifies the modification induced by a medium on the quarkonium production

$$R_{AA} = \frac{\sigma_{AA}}{N_{coll} \cdot \sigma_{pp}}$$

- σ_{AA} = cross section in AA collisions
- $\sigma_{\rm pp}$ = "reference" cross section in pp
- N_{coll} = number of collisions

In an ideal world...

$$R_{AA} \begin{cases} = 1 & \rightarrow \text{ no medium effect} \\ \neq 1 & \rightarrow \text{ medium effect} \end{cases}$$

... but quarkonium production may be modified without QGP formation \Rightarrow cold nuclear matter effects

Quarkonia in pA collisions

Important for the study of Cold Nuclear Matter effects (CNM)

Nuclear absorption

 $q\bar{q}$ pair dissociation induced by the interaction with the nucleons of the colliding nuclei

⇒ negligible at LHC energies!

Energy loss in a cold nuclear matter

The energy lost by partons via small-angle gluon emission determines the modification of the charmonium p_T spectrum in pA collisions

Parton shadowing

The nuclear environment determines the PDF modification of nucleons inside nuclei w.r.t. free nucleons

$$R_g^{\text{Pb}} = \frac{\text{PDF in bound Pb nucleus}}{\text{PDF in free nucleon}}$$

Charmonia in p-Pb collisions

- Stronger J/ψ suppression at forward rapidity
- R_{pPb} compatible with unity at backward rapidity
- ALICE (inclusive) and LHCb (prompt) results are in fair agreement within a similar kinematic domain
- Good agreement with models including shadowing^[1,2,3], CGC^[4,5], energy loss^[6], transport models^[7] and interaction with comovers^[8]
 - (5] arxiv:1707.09973 (5] arxiv:1605.05680
 - (a) [2] arxiv:1712.07024 (b) [6] arxiv:1407.5054
 - [3] arxiv:1712.07024
 [7] arxiv:1607.07927
 - (a) [4] arxiv:1707.07266 (b) [8] arxiv:1411.0549

S JHEP 07 (2018) 160

PLB 774 (2017)

$\stackrel{\checkmark}{=} R_{\rm pPb} \text{ vs } y$

- Stronger J/ψ suppression at forward rapidity
- R_{pPb} compatible with unity at backward rapidity
- ALICE (inclusive) and LHCb (prompt) results are in fair agreement within a similar kinematic domain
- Good agreement with models including shadowing^[1,2,3], CGC^[4,5], energy loss^[6], transport models^[7] and interaction with comovers^[8]

$\int J/\psi$ from b hadrons

- No strong dependence of R_{pPb} vs rapidity
- well described by FONLL + EPS09NLO

$\stackrel{\checkmark}{=} R_{\rm pPb} \text{ vs } p_{\rm T}$

- Low $p_{\rm T}$ (ALICE): clear evolution with $p_{\rm T}$ at forward and backward rapidity
- High $p_{\rm T}$ (CMS): $R_{\rm pPb}$ does not show a strong dependence on the p_{T}

$\stackrel{\checkmark}{=} R_{\rm pPb} \text{ vs } p_{\rm T}$

- Low p_T (ALICE): clear evolution with p_T at forward and backward rapidity
- High p_T (CMS): R_{pPb} does not show a strong dependence on the p_T

$\stackrel{\checkmark}{=} R_{\rm pPb}$ vs centrality

- Opposite trend at backward (increase) and forward rapidity(decrease)
- Backward rapidity: some tension with data and theoretical models

$\stackrel{\checkmark}{=} R_{\rm pPb} \text{ vs } p_{\rm T}$

- Low p_T (ALICE): clear evolution with p_T at forward and backward rapidity
- High p_T (CMS): R_{pPb} does not show a strong dependence on the p_T

$\stackrel{\bullet}{\checkmark} R_{pPb}$ vs centrality

- Opposite trend at backward (increase) and forward rapidity(decrease)
- Backward rapidity: some tension with data and theoretical models
- $ightharpoonup R_{pPb}$ p_T shape for different centrality classes not really described by models

Comprehensive description of p_T and centrality is for the moment missing

$\stackrel{\checkmark}{=} R_{\rm pPb} \text{ vs } y$

- Prompt $\psi(2S)$ shows a similar suppression at forward and backward rapidity
- Prompt ψ(2S) more suppressed at backward rapidity with respect to J/ψ
- Models including shadowing^[1,2,3], energy loss^[4,5] does not describe this larger ψ(2S) suppression at backward rapidity

(1) arxiv:1305.4569

[3] arxiv:1301.3395

(2) arxiv:1402.1747

(4) arxiv:1212.0434

🥩 [5] arxiv:1212.0434

$\stackrel{\checkmark}{=} R_{\rm pPb}$ vs y

- Prompt $\psi(2S)$ shows a similar suppression at forward and backward rapidity
- Prompt ψ(2S) more suppressed at backward rapidity with respect to J/ψ
- Models including shadowing^[1,2,3], energy loss^[4,5] do not describe this larger ψ(2S) suppression at backward rapidity
 - (1) arxiv:1305.4569
- **[**3] arxiv:1301.3395
- (2) arxiv:1402.1747
- **[**4] arxiv:1212.0434
- **[5]** <u>arxiv:1212.0434</u>
- ψ(2S) is better described by models including final state effect as Comovers^[1] and CGC+ICEM^[2]
 - (a) [1] arxiv:1411.0549 (b) [2] arxiv:1707.07266

$lap{1}{ lap{1}{ lap{1}}}}}}}}}}}}}}} } } } } } }$

- Prompt $\psi(2S)$ shows a similar suppression at forward and backward rapidity
- Prompt ψ(2S) more suppressed at backward rapidity with respect to J/ψ
- Models including shadowing^[1,2,3], energy loss^[4,5] does not describe this larger ψ(2S) suppression at backward rapidity

(1) arxiv:1305.4569

(3) arxiv:1301.3395

[2] arxiv:1402.1747

(4) arxiv:1212.0434

[5] <u>arxiv:1212.0434</u>

- ψ(2S) is better described by models including final state effect interactions as Comoves^[1] and CGC+ICEM^[2]
 - (1) arxiv:1411.0549

(2) arxiv:1707.07266

Double ratio vs centrality

- No evident energy dependence
- Results in agreement with the Comovers model

$lap{1}{4}$ 8 < p_{T} < 40 GeV/c (prompt)

- Slight decrease with increasing centrality
- Similar trend between low p_T (backward rapidity) and high p_T (mid-rapidity)

Bottomonia in p-Pb collisions

$\checkmark R_{pPb} \text{ vs } y$

- Hint for smaller $\Upsilon(1S)$ suppression at backward rapidity
- **ALICE** and **LHCb** results are in fair agreement within a similar kinematic domain
- Good agreement with models including **shadowing**[1,4,5], **energy loss**[2,3] and interaction with **comovers**^[6]
 - [1] arxiv:1707.09973
- (4) arxiv:1712.07024
- [2] arxiv:1212.0434
- [5] arxiv:1712.07024
- [3] arxiv:1407.5054
- [6] arxiv:1810.12874

№ PLB 806 (2020) 135486

IHEP 11(2018)194 ■

Quarkonia as tools 2021 **Bottomonia** Luca Micheletti

$\stackrel{\checkmark}{=} R_{\rm pPb} \text{ vs } y$

- Hint for smaller Υ(1S) suppression at backward rapidity
- ALICE and LHCb results are in fair agreement within a similar kinematic domain
- Good agreement with models including shadowing^[1,4,5], energy loss^[2,3] and interaction with comovers^[6]

 - No strong rapidity dependence observed by ATLAS ($p_{\rm T} < 40~{\rm GeV}/c$)

$lap{I}{ lap{I}} R_{ m pPb}$ vs $p_{ m T}$

- Similar behavior at forward (ALICE) and at mid-rapidity (ATLAS)
- Larger suppression at low p_T
- The trend as a function of p_T is in qualitative agreement with models including **shadowing**^[1,2,3]
- [1] arxiv:1707.09973
 - (3) arxiv:1712.07024
- **(2)** arxiv:1712.07024

$lap{l}{l} R_{ m pPb}$ vs $p_{ m T}$

- Similar behavior at forward (ALICE) and at mid-rapidity (ATLAS)
- Larger suppression at low p_T
- The trend as a function of p_T is in qualitative agreement with models including **shadowing**^[1,2,3]
 - [1] arxiv:1707.09973
 [3] arxiv:1712.07024
- (2) arxiv:1712.07024

$lap{l}{l} R_{pPb}$ vs centrality

 No visible centrality dependence at backward and forward rapidity

Y(nS) in p-Pb collisions

- Indication of larger of $\Upsilon(2S)$ and $\Upsilon(3S)$ suppression w.r.t. $\Upsilon(1S)$
- Results are in agreement with the Comover model at forward (LHCb) and at mid (CMS, ATLAS) rapidity

Summary

- \checkmark J/ ψ and ψ (2S) production as a function of p_T , y and centrality
 - Larger J/ψ suppression at backward rapidity in agreement with models including shadowing, energy loss, transport models and comovers interaction
 - Some tension between data and models for the results as a function of centrality and $p_{\rm T}$
 - Final state effects necessary to explain the larger $\psi(2S)$ suppression w.r.t. J/ ψ
- \checkmark Y(nS) production as a function of p_T , y and centrality
 - Hint for smaller $\Upsilon(1S)$ suppression at backward rapidity in agreement with **shadowing**, **energy loss** and interaction with **comovers**
 - Similar behavior as a function of p_T at forward and mid rapidity
 - No visible centrality dependence at backward and forward rapidity
 - Hint of larger of $\Upsilon(2S)$ and $\Upsilon(3S)$ suppression w.r.t. $\Upsilon(1S)$

Quarkonia as tools 2021 Summary Luca Micheletti