

Quarkonia measurements in small systems at LHCb

Qiuchan LU

On behalf of LHCb Collabration

Qaurkonia As Tools 2021

March 25, 2021

Quarkonia as a probe of nuclear medium

- The study of quarkonium production provides:
 - valuable information on non-perturbative QCD physics.
 - novel signatures for the exploration of new phenomena, multi-quark spectroscopy.
 - probes of proton structure.
 - double parton scattering interactions.
- Quarkonium in high-energy collisions at the LHC:

- Large datasets collected
- Provide a compelling setting
- Baseline for p-Pb and Pb-Pb collisions

- Compare to p-p:
 Probe of the nPDFs in nucleus
- Reference for PbPb:
 Explore the dynamics of heavyquarks in cold nuclear matter

- Probes to study QGP (Hot&dense state of matter)
- Sensitive to **initial-to-finalstate effects**

LHCb detector

[doi:10.1142/S0217751X15300227] **LHCb**: Single arm forward spectrometer fully instrumented in pseudo-rapidity range $2 < \eta < 5$.

Design for the study of particles containing **b** or **c** quarks.

Can also use for heavy ion studies.

hadron PID muon system lumi counters HCAL **ECAL** tracking

Vertex Locator IP resolution~20um decay time resolution ~ 45fs prompt/no prompt separation

High precision device down to very low-p_T.

- Excellent p_T and mass resolution.
- Excellent particle identification.
- Precision vertex reconstruction.

LHCb running modes

• Both the collider mode and fixed-target mode running at the same time.

[arXiv:1904.04130]

LHCb can do better in low-x region

• Large kinematic coverage in pA collisions.

1

Measurement of Prompt Cross-section Ratio $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ in pPb Collisions at $\sqrt{s_{NN}} = 8.16$ TeV LHCb-PAPER-2020-048, arXiv:2103.07349 (Submitted to Phys. Rev. C)

2

Observation of Multiplicity Dependent Prompt $\chi_{c1}(3872)$ and $\psi(2S)$ Production in pp Collisions *Phys. Rev. Lett.* 126 (2021) 9, 092001

3

Low-p_T J/ ψ photo-production in PbPb peripheral collisions at $\sqrt{s_{NN}}$ = 5 TeV with the LHCb experiment LHCb-PAPER-2020-043 (to be submitted to Phys. Rev. Lett)

Measurement of Prompt Cross-section Ratio $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ in pPb Collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

LHCb-PAPER-2020-048 arXiv:2103.07349 (submitted to Phys. Rev. C.)

Prompt cross-section ratio $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ in pPb 8.16 TeV

• The χ_c states(χ_{c0} , χ_{c1} , χ_{c2}):

- comprise a triplet of orbitally excited 1P charmonia.
- $M_{J/\psi} < M_{\chi_c} < M_{\psi(2S)}$.
- Their sequential mass differences are < 100 MeV.

• Why study χ_c production:

- A useful tool to study their sensitivity to final-state nuclear effects.
- Form an important feed-down contribution to J/ψ production, so as to clarify interpretation of the J/ψ data.
- Efficiency factors and sources of uncertainty cancel out in the ratio, allowing for a more precise measurement.

• The χ_c states have been measured in nuclear collisions by:

- HERA-B collaborations. [Phys. Rev. D79 (2009) 012001]
- PHENIX collaborations. [arXiv:1305.5516]
- To date, the first measurement in nuclear collision at the LHC energy!!

At LHCb In 2016 pPb Collisions At $\sqrt{s_{NN}}$ = 8.16 TeV

[Rev. Mod. Phys. 90, 015003 (2018)]

Prompt cross-section ratio $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ in pPb 8.16 TeV

[arXiv:2103.07349]

The χ_c can be measured from their radiative decay: $\chi_c \to (J/\psi \to \mu^+\mu^-) + \gamma$, with two types of γ :

Converted photons:

- The electron and positron tracks were reconstructed in the tracking system.
- Lower statistics but excellent mass resolution.

Calorimetric photons:

- Reconstructed through their energy deposits in the calorimetric system.
- Higher statistics but poor mass resolution.

 $N_{\chi_{c1}} = 1151 \pm 69$ $N_{\chi_{c2}} = 721 \pm 76$ $\frac{N_{\chi_{c2}}}{N_{\chi_{c1}}} = 0.63 \pm 0.08$

Oiuchan LU(SCNU) Ouarkonia As Tools 2021 8/20

Prompt cross-section ratio $\sigma(\chi_{c1})/\sigma(\chi_{c2})$ in pPb 8.16 TeV

$$\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c2})} = \frac{N_{\chi_{c2}} \varepsilon_{\chi_{c1}}}{N_{\chi_{c1}} \varepsilon_{\chi_{c2}}} \frac{\mathcal{B}(\chi_{c1} \to J/\psi \gamma)}{\mathcal{B}(\chi_{c2} \to J/\psi \gamma)}$$

$$\frac{\mathcal{B}(\chi_{c1} \to J/\psi\gamma)}{\mathcal{B}(\chi_{c2} \to J/\psi\gamma)}$$

$$\frac{\varepsilon_{\chi_{c1}}^{acc}}{\varepsilon_{\chi_{c2}}^{acc}} \frac{\varepsilon_{\chi_{c1}}^{reco}}{\varepsilon_{\chi_{c2}}^{reco}}$$

[arXiv:2103.07349]

√ simulated events

- The significantly larger yield of the calorimetric sample allows more precise conclusions.
- Relative production of the χ_{c1} and χ_{c2} shows no dependence on rapidity.
- Comparing with p-p data:

$$\mathcal{R} = \frac{\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})|pPb}}{\frac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})|pp}} = 1.41 \pm 0.021 \pm 0.18 \text{ (forward)}$$

the nuclear effects have the same impact on both χ_{c1} and χ_{c2} states.

0

Observation of Multiplicity Dependent Prompt $\chi_{c1}(3872)$ and $\psi(2S)$ Production in pp Collisions

Phys. Rev. Lett. 126 (2021) 9, 092001

[Phys. Rev. Lett. 126 (2021) 9, 092001]

- $\chi_{c1}(3872)$ is first discovered in 2003 by Belle in decay of $B \rightarrow J/\psi \pi^+ \pi^-$. [Phys. Rev. Lett. 91, 262001 (2003)]
- The LHCb has since measured the quantum numbers to be $J^{PC} = 1^{++}$. [Phys. Rev. Lett. 110, 222001 (2013)]
- Mass difference is consistent with zero:

$$(M_{D^0} + M_{\overline{D}^{*0}}) - M_{\chi_{c1}(3872)} = 0.07 \pm 0.12 MeV/c^2$$

• Multiple explanations explored in literature of $\chi_{c1}(3872)$:

Sum of D^0 and \overline{D}^{*0} masses

bounded via pion exchange

- Very small binding energy
- Very large radius: $\sim O(10 fm)$

[Courtesy of Matt Durham@Quark matter 2019]

Two light quarks orbit

a charmmonium core

Prompt production:

[Phys. Rev. Lett. 126 (2021) 9, 092001]

- X(3872) produced at collision vertex can be subject to further interactions with co-moving particles produced in the event
- Interact with other produced particles with break-up cross section
- Assume no interaction at low multiplicity region

Production in b-decays:

- Hadrons containing b travel down the beampipe and decay away from the primary vertex and decay in vacuum
- X(3872) from decays not subject to further interactions
- Control sample

At LHCb In pp Collisions At 8 TeV

High multiplicity pp collisions:

- Provides a testing ground for examing finalstate effects observed on quarkonium in pA and AA
- Contributes for new constraints on the structure of χ_{c1} (3872).

Event display of B0s $\rightarrow \mu^{+}\mu^{-}$ candidate [PRL 118 191801 (2017)]

A clear decrease of f_{promt} is seen as the multiplicity increase:

- Events with $b\bar{b}$ production naturally have higher multiplicity, due to their fragmentation into hadrons and subsequent decays.
- The suppression of prompt $\psi(2S)$ and $\chi c1(3872)$ production via interactions with other particles produced at the vertex.

The ratio of $\psi(2S)$ and $\chi_{c1}(3872)$ cross section is given by:

[Phys. Rev. Lett. 126 (2021) 9, 092001]

$$\frac{\sigma_{\chi}}{\sigma_{\psi}} \frac{\mathcal{B}_{\chi}}{\mathcal{B}_{\psi}} = \frac{N_{\chi}}{N_{\psi}} \frac{f_{\chi_{prompt}}}{f_{\psi_{prompt}}} \frac{\varepsilon_{\psi}^{acc}}{\varepsilon_{\chi}^{acc}} \frac{\varepsilon_{\psi}^{reco}}{\varepsilon_{\chi}^{reco}} \frac{\varepsilon_{\psi}^{PID}}{\varepsilon_{\chi}^{PID}}$$

• Prompt component:

 $\chi_{c1}(3872)$ production is suppressed relative to $\psi(2S)$ as multiplicity increases.

• b-decay component:

No significant change in relative production, as expected for decays in vacuum.

- Such behaviour is consistent with the idea of a **weakly-bound** $\chi_{c1}(3872)$ being more **dissociated** than a more **tightly bound** $\psi(2S)$.
- Comover interaction model by Espacito et al., arXiv: 2006.15044, favours the **compact tetraquark scenario.**
- A tweaked model by Braaten et al., arXiv: 2012.13499, suggests the χc1(3872) is a **charm-meson molecule.**

Low-p_T J/ ψ photo-production in PbPb peripheral collisions at $\sqrt{s_{NN}} = 5$ TeV with the LHCb experiment

LHCb-PAPER-2020-043 (to be submitted to Phys. Rev. Lett)

Coherent J/ψ photoproduction in PbPb 5 TeV

- Ultra-Peripheral Collisions(UPCs): impact parameter b is larger than the sum of the radii Ra and R_b of the two colliding nuclei, thus J/ψ mesons can be coherently produced without nuclear breaking up.
- Peripheral Collisions: b is smaller than the sum of the radii
- Coherent J/ψ production can also occurs in peripheral collision with very low-p_T excess.

Coherent J/ψ photoproduction in PbPb 5 TeV

[LHCb-PAPER-2020-043]

In one representative bin of centrality for J/ψ mesons with:

The photo-produced J/ψ candidates are visible in:

 $log(p_T)^2 < 11$ p_T range: 0 to ~250 MeV/c

Coherent J/ψ photoproduction in PbPb 5 TeV

The First PbPb Results At LHCb! [LHCb-PAPER-2020-043]
$$\frac{dY^{i}_{J/\psi}}{dy} = \frac{N^{i}_{J/\psi}}{\mathcal{B}\,N^{i}_{\mathrm{MB}}\,\varepsilon_{\mathrm{tot}}{}^{i}\,\Delta y}, \ \frac{d^{2}Y^{i}_{J/\psi}}{dp_{\mathrm{T}}dy} = \frac{dY^{i}_{J/\psi}}{dy} \times \frac{1}{\Delta p_{\mathrm{T}}},$$

- LHCb measured the yield of coherently photo-produced prompt J/ψ events at very low p_T .
- Yields are displayed as a function of **rapidity** and **transverse momentum** of the J/ψ meson in intervals of **Npart**.
- In particular the **p**_T dependent data are the **most precise results** to date.
- Data are qualitatively well reproduced in models with and without overlap effects, confirming the presence of photoproduction.

Summary

LHCb is the dedicated forward detector:

LHCb is a quarkonia friendly detector as proven by many precise results in **pp**, **pPb** and **PbPb** collisions!

Recent quarkonium results from LHCb have been discussed:

- First measurement of 1P charmonia in nuclear collisions at the LHC. The cross-section ratio revealed no difference in the nuclear effects acting on the χ_{c1} and χ_{c2} states.
- LHCb measured the multiplicity dependence of $\chi_{c1}(3872)$ in pp collisions. Such studies probe the nature of this exotic state through its interaction with the medium. Whether the $\chi c1(3872)$ is a tetraquark or a charm-meson molecule is still a point of debate.
- Measurement of photo-produced J/ ψ in peripheral PbPb collisions is the most precise to date. The first PbPb results at LHCb!
- LHCb's future is bright for quarkonium production studies:

Qiuchan LU(SCNU) Quarkonia As Tools 2021

20/20

Many thanks for your attention

Comments are always welcome!