Status of DPS theory

Riccardo Nagar

University of Milan Bicocca
virtual Quarkonia as Tools 2021, 25 March 2021

建DEGLI STUDI

What is double parton scattering (DPS)?

$$
\left|\mathrm{q}_{1}^{\perp}+\mathrm{q}_{2}^{\perp}\right| \sim \Lambda \ll Q
$$

Definition

Double parton scattering (DPS) is a proton-proton scattering process where two partons from each proton undergo two separate hard interactions.

- Here, focus of perturbative QCD description of DPS in $p p$ collisions.
pioneers: Politzer; Paver, Treleani; Mekhfi;
recent work by: Gaunt, Stirling; Blok, Dokshitzer, Frankfurt; Diehl, Schäfer; Manohar, Waalewijn; Ryskin; Snigierev...

When is DPS important?

Scaling

\triangleright differential XS: $\frac{\mathrm{d}^{2} \sigma_{\mathrm{SPS}}}{\mathrm{d}^{2} \boldsymbol{q}_{1} \mathrm{~d}^{2} \boldsymbol{q}_{\mathbf{2}}} \sim \frac{\mathrm{d}^{2} \sigma_{\mathrm{DPS}}}{\mathrm{d}^{2} \boldsymbol{q}_{1} \mathrm{~d}^{2} \boldsymbol{q}_{\mathbf{2}}} \Longrightarrow$ same power counting!
\triangleright integrated XS: $\frac{\sigma_{\mathrm{DPS}}}{\sigma_{\mathrm{SPS}}} \sim \mathcal{O}\left(\frac{\Lambda^{2}}{\bar{Q}^{2}}\right) \Longrightarrow$ phase-space suppressed
$>$ competitive with SPS in regions of small $\left|\mathbf{q}_{1}^{\perp}\right|,\left|\mathbf{q}_{2}^{\perp}\right|$
\rightarrow e.g. two pairs of back-to-back jets

- DPS relevance increases with collision energy
\downarrow enhanced by parton luminosities at small-x, e.g. $\boldsymbol{F}_{\boldsymbol{g g}} \propto\left(\boldsymbol{f}_{\boldsymbol{g}}\right)^{2}$
\rightarrow interest for quarkonia production
- DPS dominant contribution for coupling-suppressed processes in SPS
\rightarrow same-sign $W \boldsymbol{W}$ production at $\mathcal{O}\left(\boldsymbol{\alpha}_{s}^{2}\right)$ in SPS, but $\mathcal{O}(\mathbf{1})$ in DPS

DPS cross section

For colourless final states, analogous factorized form to the SPS case

- $\hat{\sigma}^{(i)}$ are regular partonic cross sections
- $F_{a b}$ are double parton distributions (DPDs)
- $\boldsymbol{y}\left[\mathrm{GeV}^{-1}\right]$ is inter-parton transverse separation

Transverse-momentum dependent (TMD) factorization:

$$
\begin{aligned}
& \frac{\mathbf{d} \sigma_{\mathrm{DPS}}}{\mathbf{d} \boldsymbol{q}_{1}^{\perp} \mathbf{d} \boldsymbol{q}_{2}^{\perp}}=\frac{1}{\boldsymbol{C}} \sum_{a_{1} a_{2} b_{1} b_{2}} \hat{\sigma}_{a_{1} b_{1}}^{(1)} \hat{\sigma}_{a_{2} b_{2}}^{(2)} \\
& \quad \times \int \mathbf{d}^{2} \boldsymbol{y} \frac{\mathbf{d}^{2} z_{1}}{\mathbf{2} \boldsymbol{\pi}^{2}} \frac{\mathbf{d}^{2} z_{2}}{2 \pi^{2}} e^{-i \boldsymbol{q}_{1}^{\perp} z_{1}-i q_{2}^{\perp} z_{2}} F_{a_{1} a_{2}}\left(z_{1}, z_{2}, y\right) F_{b_{1} b_{2}}\left(z_{1}, z_{2}, y\right)
\end{aligned}
$$

Collinear factorization:

$$
\mathbf{d} \sigma_{\mathrm{DPS}}=\frac{1}{C} \sum_{a_{1} a_{2} b_{1} b_{2}} \hat{\sigma}_{a_{1} b_{1}}^{(1)} \otimes \hat{\sigma}_{a_{2} b_{2}}^{(2)} \otimes \int \mathbf{d}^{2} \boldsymbol{y} F_{a_{1} a_{2}}(y) \otimes F_{b_{1} b_{2}}(y)
$$

Status of factorization

Proof of factorized formulae has been completed: current status at the same level as SPS counterpart.

Diehl, Ostermeier, Schäfer 2011; Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2015
Vladimirov 2016, 2017; Buffing, Diehl, Kasemets 2017; Diehl, RN 2018
Main steps:

- collinear gluons \rightarrow Wilson lines
- Glauber gluon cancellation
\rightarrow soft gluons \rightarrow soft factor
- soft factor re-absorbed into DPDs
\hookrightarrow rapidity dependence, Collins-Soper equations

Double parton distributions

Generic TMD DPDs

Factorization formula implies definition of "bare" DPDs similar to PDFs

$$
\begin{aligned}
& \left.F_{a_{1} a_{2}}^{(0)}\left(x_{1}, x_{2}, z_{1}, z_{2}, y\right) \propto\langle p| \mathcal{O}_{a_{1}}\left(y, z_{1}\right) \mathcal{O}_{a_{2}}\left(0, z_{2}\right)|p\rangle\right|_{z_{i}^{+}=y_{i}^{+}=0} \\
& \text { in terms of operators } \mathcal{O}(y, z) \sim \bar{\psi}\left(y-\frac{1}{2} z\right) \Gamma \psi\left(y+\frac{1}{2} z\right)
\end{aligned}
$$

\downarrow integrated collinear DPDs $F_{a_{1} a_{2}}^{(0)}\left(x_{1}, x_{2}, y\right)$ by letting $z_{1}, z_{2} \rightarrow \mathbf{0}$ \hookrightarrow used in integrated cross section calculations
\downarrow momentum-space DPDs $\boldsymbol{F}_{a_{1} a_{2}}^{(0)}\left(x_{1}, x_{2}, \Delta\right)$ by Fourier transform \hookrightarrow used in DPD sum rules

Polarization

Note that in an unpolarized proton, two partons can be both polarized. In DPS, polarized distributions are in principle as relevant as unpolarized ones.

DGLAP evolution for DPDs

Evolution in position space

Renormalizing the bare DPDs adds a scale dependence for each parton:

$$
\begin{aligned}
& \frac{\mathrm{d} F_{a_{1} a_{2}}\left(x_{i}, y ; \mu_{1}, \mu_{2}\right)}{\mathrm{d} \log \mu_{1}}=2\left[P_{a_{1} c}\left(\mu_{1}\right) \otimes_{1} F_{c b_{1}}\left(y ; \mu_{1}, \mu_{2}\right)\right]\left(x_{i}\right) \\
& \frac{\mathrm{d} F_{a_{1} a_{2}}\left(x_{i}, y ; \mu_{1}, \mu_{2}\right)}{\mathrm{d} \log \mu_{2}}=2\left[P_{a_{2} c}\left(\mu_{2}\right){\underset{2}{ }}_{\otimes}^{F_{a_{1} c}}\left(y ; \mu_{1}, \mu_{2}\right)\right]\left(x_{i}\right)
\end{aligned}
$$

Evolution in momentum space

Momentum-space dependent DPDs obey inhomogeneous evolution equations:

$$
\begin{aligned}
& \frac{\mathrm{d} F_{a_{1} a_{2}}\left(x_{i}, \Delta ; \mu, \mu\right)}{\mathrm{d} \log \mu} \\
& \quad=2\left[P_{a_{1} c}(\mu) \otimes_{1} F_{c b_{1}}(\Delta ; \mu, \mu)+P_{a_{1} c}(\mu) \otimes_{1} F_{c b_{1}}(\Delta ; \mu, \mu)\right. \\
& \left.\quad+P_{s, a_{1} a_{2}, a_{0}}(\mu) \otimes_{12} f_{a_{0}}(\mu)\right]\left(x_{i}\right)
\end{aligned}
$$

where P_{s} is the $\mathbf{1} \boldsymbol{\rightarrow}$ splitting function.

DGLAP evolution for DPDs: numerics

Double DGLAP evolution is a non-trivial numerical task, but it is also the main ingredient for DPS phenomenological studies.

Gaunt-Stirling DPD code (private) [Gaunt, Stirling '09]

- LO DGLAP (both \boldsymbol{y} - and $\boldsymbol{\Delta}$-dependent)

Only publicly available set: GS09 [gsdpdf.hepforge.org]

- based on products of MSTW2008 PDFs
- \boldsymbol{y}-integrated DPDs

[J. Gaunt's talk @ MPI10]

ChiliPDF project [Dieh, RN, Tackmann, Pl̈̈ßß]
$>$ unequal-scale evolution ($\mu_{1} \neq \boldsymbol{\mu}_{2}$)

- NNLO DGLAP, with NNLO flavor matching
- polarized DGLAP
- flexible input (numerical, analytical, ...)

To the best of my knowledge, private DPD evolution codes have been developed by other groups (e.g. in [Elias, Golec-Biernat, Staśto '18])

DPD sum rules

\downarrow integrated DPDs (i.e. momentum-space DPDs at $\boldsymbol{\Delta}=\mathbf{0}$) obey sum rules analogous to the PDF ones, and expressed in terms of PDFs

- these are used to constrain DPD models

Momentum sum rule

$$
\sum_{a_{2}} \int_{0}^{1-x_{1}} \mathrm{~d} x_{2} x_{2} F_{a_{1} a_{2}}\left(x_{1}, x_{2}, 0 ; \mu\right)=\left(1-x_{1}\right) f_{a_{1}}\left(x_{1} ; \mu\right)
$$

Number sum rule

$$
\begin{array}{rl}
\int_{0}^{1-x_{1}} & \mathrm{~d} x_{2}\left[F_{a_{1} a_{2}}\left(x_{1}, x_{2}, 0 ; \mu\right)-F_{a_{1} \bar{a}_{2}}\left(x_{1}, x_{2}, 0 ; \mu\right)\right] \\
& =\left(N_{a_{2}, \mathrm{v}}+\delta_{a_{1} \bar{a}_{2}}-\delta_{a_{1} a_{2}}\right) f_{a_{1}}(x ; \mu)
\end{array}
$$

where $\boldsymbol{N}_{a, v}$ is the number of valence partons of type \boldsymbol{a}

DPDs from perturbative splitting

A class of DPD Ansätze at small y

When $\boldsymbol{y} \rightarrow \mathbf{0}$ DADs are sum of "intrinsic" and "splitting" piece

$$
\left.F(y)\right|_{y \rightarrow 0}=F_{\text {int }}(y)+F_{\text {pl }}(y)
$$

At larger \boldsymbol{y}, DPDs can be modeled so that $\boldsymbol{F}(\boldsymbol{y}) \rightarrow \mathbf{0}$ as $\boldsymbol{y} \rightarrow \infty$.

Perturbative splitting

$>F_{\text {pl }}(y) \propto \frac{1}{y^{2}}$

- UV divergence in cross-section

$$
\int \mathrm{d}^{2} y F_{1} F_{2} \sim \int \frac{\mathrm{~d}^{2} y}{y^{4}}
$$

- comes from region of overlap between SPS and DPS

intrinsic ($\boldsymbol{F}_{\text {int }}$ or " 2 ")
twist-4 distribution at small \boldsymbol{y}, nonperturbative

Double-counting between SPS and DPS

The UV divergence in \boldsymbol{y} is associated to the double counting of SPS and DPS contributions in the region where $\boldsymbol{y} \rightarrow \mathbf{0}$:

DPS interpretation (1v1)

SPS interpretation

Solution: DGS scheme

The DGS subtraction scheme cancels the UV divergence at all orders:

$$
\sigma=\sigma_{\mathrm{SPS}}+\sigma_{\mathrm{DPS}}-\sigma_{\mathrm{sub}}, \quad \sigma_{\mathrm{sub}}=\sigma_{\mathrm{DPS}} \text { with } \boldsymbol{F}_{1,2}=\boldsymbol{F}_{\mathrm{spl}}
$$

where the DPS cross section is regularized introducing a cutoff $\boldsymbol{\nu} \sim \boldsymbol{Q}$

$$
\sigma_{\mathrm{DPS}} \propto \int \mathrm{~d}^{2} y F_{1}(y) F_{2}(y) \rightarrow \int \mathrm{d}^{2} y \Phi^{2}(y \nu) F_{1}(y) F_{2}(y)
$$

Simple cutoff regulator $\Phi(y \nu)=\Theta\left(y \nu-2 e^{-\gamma_{E}}\right)$.

Intrinsic DPDs: simple models

Product Ansatz

At a scale μ_{0} the intrinsic DPDs are given by the product of PDFs and a geometric factor:

$$
\begin{aligned}
& F_{a b}^{\mathrm{int}}\left(x_{1}, x_{2}, y ; \mu_{0}\right) \\
& \quad=f_{a}\left(x_{1} ; \mu_{0}\right) f_{b}\left(x_{2} ; \mu_{0}\right) G\left(x_{1}, x_{2}, y\right)
\end{aligned}
$$

Parton correlations from G and DGLAP evolution.
\hookrightarrow iterated improvements to fulfil sumrules
Diehl, Gaunt, Lang, Plößl, Schäfer 2020

Pocket formula

Simplify assumption if DPDs are product of PDFs at all scales, and \boldsymbol{G} independent of $\boldsymbol{x}_{\boldsymbol{i}}$:

$$
F_{a b}^{\mathrm{int}}\left(x_{1}, x_{2}, y ; \mu_{1}, \mu_{2}\right)=f_{a}\left(x_{1} ; \mu_{1}\right) f_{b}\left(x_{2} ; \mu_{2}\right) G(y)
$$

\checkmark neglect all parton correlations
violates momentum conservation for $\boldsymbol{x}_{1}+\boldsymbol{x}_{\mathbf{2}}>\mathbf{1}$

- violates double DGLAP equations
- ... but: leads to very convenient XS formula (the DPS pocket formula)

$$
\sigma_{\mathrm{DPS}}=\frac{1}{C} \frac{\sigma_{1}^{\mathrm{SPS}} \sigma_{2}^{\mathrm{SPS}}}{\sigma_{\text {eff }}}, \quad \text { with } \sigma_{\text {eff }}=\frac{1}{\int \mathrm{~d}^{2} \boldsymbol{y} \boldsymbol{G}^{2}(\boldsymbol{y})}
$$

Estimates of $\sigma_{\text {eff }}$

Experimental measurements of $\sigma_{\text {eff }}$ have given very different results among processes and experiments, spanning a range from ~ 1 to $\sim 35 \mathrm{mb}$.
latest measurements (4-jets CMS)

[CMS-PAS-SMP-20-007]
$\sigma_{\text {eff }}$ measurements (Preliminary)

For quarkonia production, the extracted values of $\boldsymbol{\sigma}_{\text {eff }}$ are usually on the lower side, pointing to a larger effect of inter-partonic correlations.

What is left

Recent theory developments

- parton shower combining SPS and DPS, accounting for the "1 $\boldsymbol{\rightarrow}$ 2"
splitting and implementing the SPS-DPS double counting (dShower)
Cabouat, Gaunt 2020
- lattice QCD: extracted moments of the pion DPD and of the proton DPD

Bali et al. 2018, Zimmermann (PhD Thesis) 2020

What I did not talk about (but probably more in next talk by Matteo)

- many phenomenological models for DPDs
\hookrightarrow constituent quark models [Rinaldi, Scopetta, Ceccopieri], "bag" model [Manohar, Waalewijn], valence quark models [Broniowski, Ruiz Arriola], KMR approach [Golec-Biernat, Staśto], . . .
- many phenomenological studies with DPS Blok, Dokshitzer, Frankfurt, Strikman, Maciuta,

Szczurek, Kutak, van Hameren, Gaunt, Kom, Kulesza, Stirling, Fedkyevich, Kasemets, Myska, Cotogno, Lansberg, Yamanaka,
Zhang, Shao, Ceccopieri, Rinaldi, Scopetta,

- DPS in pA collisions and TPS (triple parton scattering) D'Enteria, Snigirev

Summary

- DPS contributions can be comparable or even dominant w.r.t. SPS in some cases, including quarkonia production
- status of DPS factorization proofs is at the same level as for SPS
- double-counting of SPS and DPS in small- \boldsymbol{y} region is understood
- double DGLAP evolution and flavor matching are under control with tools developments
- perturbative splitting form of DPDs known up to NLO
- we have all ingredients to compute DPS cross section at LO in full QCD w.o. approximations (replacing pocket formula)
- it would be interesting to study the colour non-singlet DPDs
- a lot of progress and a lot of interest from many fields (an entire session of Quarkonia2020 was on DPS!)

Summary

- DPS contributions can be comparable or even dominant w.r.t. SPS in some cases, including quarkonia production
- status of DPS factorization proofs is at the same level as for SPS
- double-counting of SPS and DPS in small- \boldsymbol{y} region is understood
- double DGLAP evolution and flavor matching are under control with tools developments
- perturbative splitting form of DPDs known up to NLO
- we have all ingredients to compute DPS cross section at LO in full QCD w.o. approximations (replacing pocket formula)
- it would be interesting to study the colour non-singlet DPDs
- a lot of progress and a lot of interest from many fields (an entire session of Quarkonia2020 was on DPS!)

Thank you!

Modeling the y-dependence

Product Ansatz

An example for the geometric factor $G\left(x_{1}, x_{2}, y\right)$ appearing in the product Ansatz of DPDs:

$$
\begin{aligned}
& F_{\text {int } a_{1} a_{2}}\left(x_{1}, x_{2}, y, \mu_{0}, \mu_{0}\right)=f_{a_{1}}\left(x_{1}, \mu_{0}\right) f_{a_{2}}\left(x_{2}, \mu_{0}\right) \\
& \quad \times \frac{\exp \left(-\frac{y^{2}}{4 h_{a_{1} a_{2}}}\right)}{4 \pi h_{a_{1} a_{2}}} \Theta\left(1-x_{1}-x_{2}\right)\left(\frac{1-x_{1}-x_{2}}{\left(1-x_{1}\right)\left(1-x_{2}\right)}\right)^{n_{a_{1} a_{2}}}
\end{aligned}
$$

LO splitting

The LO splitting expression:
(distinguish the geometric factor and the dimensional factor)

$$
\begin{aligned}
& F_{\text {spl } a_{1} a_{2}}\left(x_{1}, x_{2}, y, \mu_{y}, \mu_{y}\right)= \\
& \frac{1}{\pi y^{2}} \exp \left(-\frac{y^{2}}{4 h_{a_{1} a_{2}}}\right) \frac{\alpha_{s}\left(\mu_{y}\right)}{2 \pi} T_{a_{0} \rightarrow a_{1} a_{2}}\left(\frac{x_{1}}{x_{1}+x_{2}}\right) \frac{f_{a_{0}}\left(x_{1}+x_{2}, \mu_{y}\right)}{x_{1}+x_{2}}
\end{aligned}
$$

The nucleon widths $\boldsymbol{h}_{a_{1} a_{2}}$ can also depend on $\boldsymbol{x}_{\boldsymbol{i}}$, and can be taken e.g. from TMD studies.

Interplay of splitting and intrinsic contributions

$1 \vee 1 \rightarrow$ divergence is $\frac{1}{y^{4}}$, subtracted
$2 \mathrm{v} 2 \rightarrow$ not divergent

$2 \mathrm{v} 1 \rightarrow$ divergence is $\frac{1}{y^{2}} \rightarrow \log y$ terms

