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What is double parton scattering (DPS)?
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Definition

Double parton scattering (DPS) is a
proton-proton scattering process where
two partons from each proton undergo
two separate hard interactions.

I Here, focus of perturbative
QCD description of DPS in pp
collisions.

pioneers: Politzer; Paver, Treleani; Mekhfi;

recent work by: Gaunt, Stirling; Blok,

Dokshitzer, Frankfurt; Diehl, Schäfer; Manohar,

Waalewijn; Ryskin; Snigierev...
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When is DPS important?

Scaling

I differential XS:
d2σSPS

d2q1d2q2
∼ d2σDPS

d2q1d2q2
=⇒ same power counting!

I integrated XS:
σDPS

σSPS
∼ O

(
Λ2

Q2

)
=⇒ phase-space suppressed

I competitive with SPS in regions of small |q⊥1 |, |q⊥2 |
→ e.g. two pairs of back-to-back jets

I DPS relevance increases with collision energy

I enhanced by parton luminosities at small-x, e.g. Fgg ∝ (fg)
2

→ interest for quarkonia production

I DPS dominant contribution for coupling-suppressed processes in SPS
→ same-sign WW production at O(α2

s) in SPS, but O(1) in DPS
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DPS cross section

For colourless final states, analogous factorized form to the
SPS case

◦ σ̂(i) are regular partonic cross sections

◦ Fab are double parton distributions (DPDs)

◦ y [GeV−1] is inter-parton transverse separation

x2p

p p̄

q1, Q1

q2, Q2

x1p x̄1p̄

x̄2p̄

Transverse-momentum dependent (TMD) factorization:

dσDPS

dq⊥1 dq⊥2
=

1

C

∑
a1a2b1b2

σ̂
(1)
a1b1

σ̂
(2)
a2b2

×
∫

d2y
d2z1

2π2

d2z2

2π2
e−iq

⊥
1 z1−iq

⊥
2 z2 Fa1a2(z1, z2, y)Fb1b2(z1, z2, y)

Collinear factorization:

dσDPS =
1

C

∑
a1a2b1b2

σ̂
(1)
a1b1
⊗ σ̂(2)

a2b2
⊗
∫

d2y Fa1a2(y)⊗ Fb1b2(y)

here I am neglecting xi, x̄i in the arguments
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Status of factorization

Proof of factorized formulae has been completed: current status at the
same level as SPS counterpart.

Diehl, Ostermeier, Schäfer 2011; Diehl, Gaunt, Ostermeier, Plößl, Schäfer 2015

Vladimirov 2016, 2017; Buffing, Diehl, Kasemets 2017; Diehl, RN 2018

Main steps:

I collinear gluons→ Wilson lines

I Glauber gluon cancellation

I soft gluons→ soft factor

I soft factor re-absorbed into DPDs
↪→ rapidity dependence, Collins-Soper equations
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Double parton distributions

Generic TMD DPDs

Factorization formula implies definition of “bare” DPDs similar to PDFs

F
(0)
a1a2

(x1, x2, z1, z2, y) ∝ 〈p| Oa1(y, z1)Oa2(0, z2) |p〉
∣∣
z
+
i

=y
+
i

=0

in terms of operators O(y, z) ∼ ψ̄(y− 1
2z) Γψ(y+ 1

2z).

I integrated collinear DPDs F
(0)
a1a2(x1, x2, y) by letting z1, z2 → 0

↪→ used in integrated cross section calculations

I momentum-space DPDs F
(0)
a1a2(x1, x2,∆) by Fourier transform

↪→ used in DPD sum rules

Polarization

Note that in an unpolarized proton, two partons can be both polarized.
In DPS, polarized distributions are in principle as relevant as unpolarized
ones.
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DGLAP evolution for DPDs

Evolution in position space

Renormalizing the bare DPDs adds a scale dependence for each parton:

dFa1a2(xi, y; µ1, µ2)

d logµ1
= 2

[
Pa1c(µ1)⊗

1
Fcb1(y; µ1, µ2)

]
(xi)

dFa1a2(xi, y; µ1, µ2)

d logµ2
= 2

[
Pa2c(µ2)⊗

2
Fa1c(y; µ1, µ2)

]
(xi)

Evolution in momentum space

Momentum-space dependent DPDs obey inhomogeneous evolution equations:

dFa1a2(xi,∆; µ, µ)

d logµ

= 2
[
Pa1c(µ)⊗

1
Fcb1(∆; µ, µ) + Pa1c(µ)⊗

1
Fcb1(∆; µ, µ)

+ Ps, a1a2,a0(µ)⊗
12
fa0(µ)

]
(xi)

where Ps is the 1→ 2 splitting function.
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DGLAP evolution for DPDs: numerics

Double DGLAP evolution is a non-trivial numerical task, but it is also the main
ingredient for DPS phenomenological studies.

Gaunt-Stirling DPD code (private) [Gaunt, Stirling ’09]

I LO DGLAP (both y- and ∆-dependent)

Only publicly available set: GS09 [gsdpdf.hepforge.org]

I based on products of MSTW2008 PDFs

I y-integrated DPDs

[J. Gaunt’s talk @ MPI10]
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ChiliPDF project [Diehl, RN, Tackmann, Plößl]

I unequal-scale evolution (µ1 6= µ2)

I NNLO DGLAP, with NNLO flavor matching

I polarized DGLAP

I flexible input (numerical, analytical, . . . )

To the best of my knowledge, private DPD evolution codes have been developed by other groups

(e.g. in [Elias, Golec-Biernat, Staśto ’18])
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DPD sum rules

I integrated DPDs (i.e. momentum-space DPDs at ∆ = 0) obey sum rules
analogous to the PDF ones, and expressed in terms of PDFs

I these are used to constrain DPD models

Momentum sum rule

∑
a2

∫ 1−x1

0

dx2 x2 Fa1a2(x1, x2, 0; µ) = (1− x1) fa1(x1; µ)

Number sum rule∫ 1−x1

0

dx2 [Fa1a2(x1, x2, 0; µ)− Fa1ā2(x1, x2, 0; µ)]

= (Na2,v + δa1ā2 − δa1a2) fa1(x; µ)

where Na,v is the number of valence partons of type a
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DPDs from perturbative splitting

A class of DPD Ansätze at small y

When y → 0 DPDs are sum of
“intrinsic” and “splitting” piece

F (y)|y→0 = Fint(y) + Fspl(y)

At larger y, DPDs can be modeled so
that F (y)→ 0 as y →∞.

Perturbative splitting

I Fspl(y) ∝ 1

y2

I UV divergence in cross-section∫
d2y F1 F2 ∼

∫
d2y

y4

I comes from region of overlap
between SPS and DPS

intrinsic (Fint or “2”)

twist-4 distribution at small y, nonperturbative

perturbative splitting (Fspl or “1”)

I LO: Fab ∝ Pa0→ab · fa0 [Diehl et al. 2011]

I NLO: calculated [Diehl et al. 2019]
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Double-counting between SPS and DPS

The UV divergence in y is associated to the double counting of SPS and DPS
contributions in the region where y → 0:

DPS interpretation (1v1) SPS interpretation

Solution: DGS scheme

The DGS subtraction scheme cancels the UV divergence at all orders:

σ = σSPS + σDPS − σsub , σsub = σDPS with F1,2 = Fspl

where the DPS cross section is regularized introducing a cutoff ν ∼ Q

σDPS ∝
∫

d2y F1(y)F2(y)→
∫

d2yΦ2(yν)F1(y)F2(y)

Simple cutoff regulator Φ(yν) = Θ(yν − 2e−γE). Diehl, Gaunt, Schönwald 2015
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Intrinsic DPDs: simple models

Product Ansatz

At a scale µ0 the intrinsic DPDs are given by the
product of PDFs and a geometric factor:

F
int
ab(x1, x2, y; µ0)

= fa(x1; µ0) fb(x2; µ0)G(x1, x2, y)

Parton correlations from G and DGLAP evolution.
↪→ iterated improvements to fulfil sumrules

Diehl, Gaunt, Lang, Plößl, Schäfer 2020

Pocket formula

Simplify assumption if DPDs are product of PDFs at all scales, and G
independent of xi:

F int
ab(x1, x2, y; µ1, µ2) = fa(x1; µ1) fb(x2; µ2)G(y)

I neglect all parton correlations

I violates momentum conservation for x1 + x2 > 1

I violates double DGLAP equations

I ... but: leads to very convenient XS formula (the DPS pocket formula)

σDPS =
1

C

σSPS
1 σSPS

2

σeff
, with σeff =

1∫
d2y G2(y)
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Estimates of σeff

Experimental measurements of σeff have given very different results among
processes and experiments, spanning a range from ∼ 1 to ∼ 35 mb.

σeff measurements [CERN-EP-2018-274]

latest measurements (4-jets CMS)

[CMS-PAS-SMP-20-007]

For quarkonia production, the extracted values of σeff are usually on the lower
side, pointing to a larger effect of inter-partonic correlations.
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What is left

Recent theory developments

I parton shower combining SPS and DPS, accounting for the “1→ 2”
splitting and implementing the SPS-DPS double counting (dShower)

Cabouat, Gaunt 2020

I lattice QCD: extracted moments of the pion DPD and of the proton DPD
Bali et al. 2018, Zimmermann (PhD Thesis) 2020

What I did not talk about (but probably more in next talk by Matteo)

I many phenomenological models for DPDs

↪→ constituent quark models [Rinaldi, Scopetta, Ceccopieri], “bag” model [Manohar, Waalewijn],

valence quark models [Broniowski, Ruiz Arriola], KMR approach [Golec-Biernat, Staśto], . . .

I many phenomenological studies with DPS Blok, Dokshitzer, Frankfurt, Strikman, Maciu la,

Szczurek, Kutak, van Hameren, Gaunt, Kom, Kulesza, Stirling, Fedkyevich, Kasemets, Myska, Cotogno, Lansberg, Yamanaka,

Zhang, Shao, Ceccopieri, Rinaldi, Scopetta, . . . . . .

I DPS in pA collisions and TPS (triple parton scattering) D’Enterria, Snigirev
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Summary

I DPS contributions can be comparable or even dominant w.r.t. SPS in
some cases, including quarkonia production

I status of DPS factorization proofs is at the same level as for SPS

I double-counting of SPS and DPS in small-y region is understood

I double DGLAP evolution and flavor matching are under control with tools
developments

I perturbative splitting form of DPDs known up to NLO

I we have all ingredients to compute DPS cross section at LO in full QCD
w.o. approximations (replacing pocket formula)

I it would be interesting to study the colour non-singlet DPDs

I a lot of progress and a lot of interest from many fields
(an entire session of Quarkonia2020 was on DPS!)

Thank you!
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Modeling the y-dependence

Product Ansatz

An example for the geometric factor G(x1, x2, y) appearing in the product
Ansatz of DPDs:

Finta1a2
(x1, x2, y, µ0, µ0) = fa1(x1, µ0) fa2(x2, µ0)

×
exp

(
− y2

4ha1a2

)
4πha1a2

Θ(1− x1 − x2)

(
1− x1 − x2

(1− x1)(1− x2)

)na1a2

,

LO splitting

The LO splitting expression:
(distinguish the geometric factor and the dimensional factor)

Fspla1a2
(x1, x2, y, µy, µy) =

1

πy2
exp

(
− y2

4ha1a2

)
αs(µy)

2π
Ta0→a1a2

(
x1

x1 + x2

)
fa0(x1 + x2, µy)

x1 + x2

The nucleon widths ha1a2 can also depend on xi, and can be taken e.g. from
TMD studies.
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Interplay of splitting and intrinsic contributions

1v1→ divergence is
1

y4
, subtracted

2v2→ not divergent

2v1→ divergence is
1

y2
→ log y terms
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