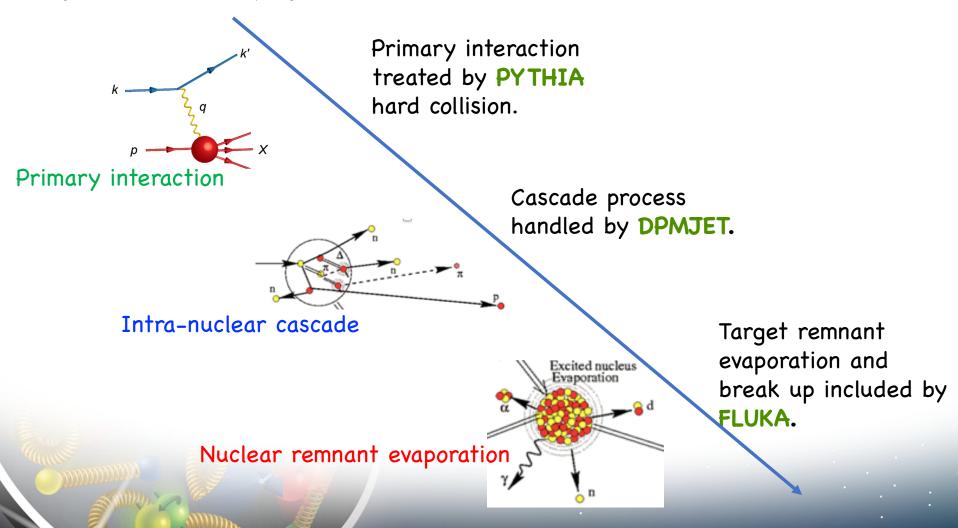


Incoherent diffractive events vetoing

Exclusive coherent vector meson production $e + A \rightarrow e' + V + A$ where the nucleus remains intact is expected to be one of the important measurements at the EIC. The incoherent production $e + A \rightarrow e' + V + X$ swamps the coherent production, and we need to be able to veto the incoherent case in order to measure the coherent production. $e + Pb \rightarrow e' + J/\psi + X(p, n, \gamma)$

The goal is to remove all the incoherent diffractive events

18x110 GeV


Veto on forward neutrons, protons and photons.

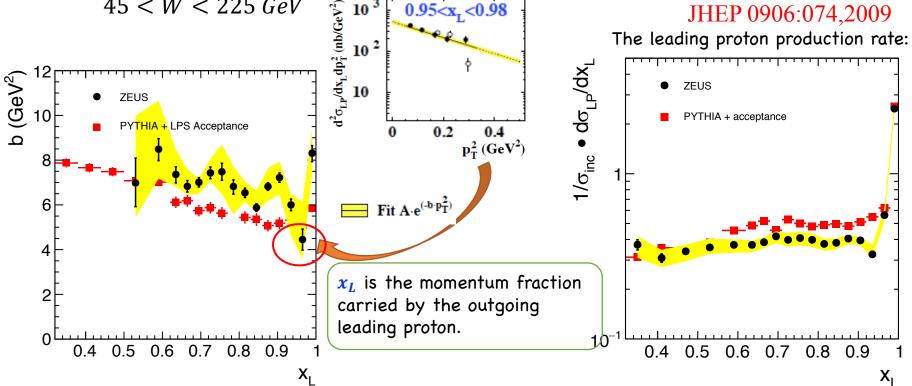
Events	ratio
Only neutron(s)	8.1%
Only proton(s)	0%
Only photon(s)	7.66%
Neutron(s) and proton(s)	3.19%
Neutron(s) and photon(s)	40.94%
Proton(s) and photon(s)	5.82%
Neutron(s), proton(s) and photon(s)	35.03%

Wan Chang 2021/03/25

BeAGLE simulation framework

We are using BeAGLE (Benchmark eA Generator for LEptoproduction) package for the event simulation.

3


PYTHIA tune for ZEUS e+p

Cuts on Event level:

$$x_L > 0.32$$

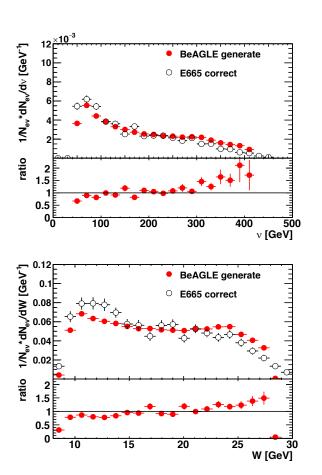
 $p_T^2 < 0.5 \text{ GeV}^2$
 $Q^2 > 3 \text{ GeV}^2$
 $45 < W < 225 \text{ GeV}$

LPS trigger conditions and acceptance were required, dropped tracks very close to beamline or the edge of LPS detectors.

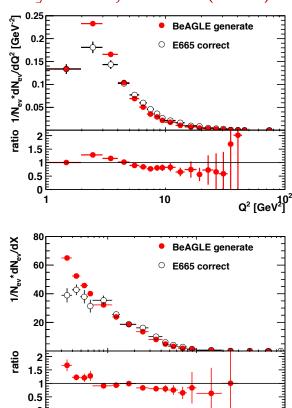
We have a good PYTHIA tune for target fragmentation for ep.

Remaining improvement would require a full GEANT simulation for the Hera

Interaction Region


How well have we validated the Beagle results?

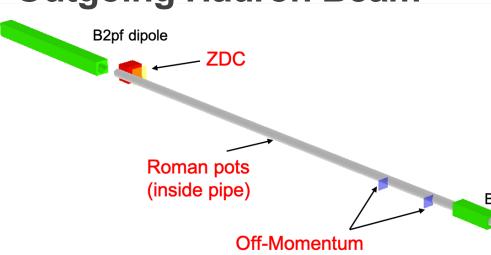
Data sample:

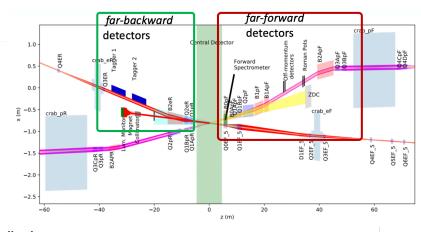

 μ^+ +Xe Beam momentum: 490 GeV × 0GeV

0.1 < y < 0.85 $1.0 < Q^2 < 100$ $0.0035 \text{ rad} < \theta < 6.29 \text{ rad}$ 8 < W < 30 GeVX > 0.002

These plots are for inclusive variables only, so they do not verify the nuclear cascade part.

Z. Phys. C 61, 179-198(1994)




 10^{-1}

The comparison shows that BeAGLE does reasonably describes lepton-nucleus interactions at the Electron-Ion collider.

IR Layout and Acceptances

Outgoing Hadron Beam

B1apf dipole

C B1pf dipole

Q1bpf quadrupole

Hadron beam Q2pf quadrupole
Coming from IP

Q2pf quadrupole
Q1apf quadrupole
B0apf dipole

B0 Silicon Detector (inside magnet bore)

Detector	Angular accept. [mrad]	p_T coverage
ZDC @ ~30m	θ <5.5 (η > 6)	p_T <1.3 GeV
Roman Pots	$0*<\theta<5.0 \ (\eta > 6)$	*Low p_T cutoff (beam optics)
Off-Momentum Detectors	$0.0 < \theta < 5.0 \ (\eta > 6)$	Low-rigidity particles from nuclear breakups
B0 forward spectrometer	$5.5 < \theta < 20.0$ $(4.6 < \eta < 5.9)$	High p_T

Detectors

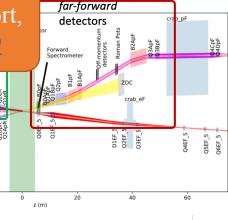
B0pf dipole

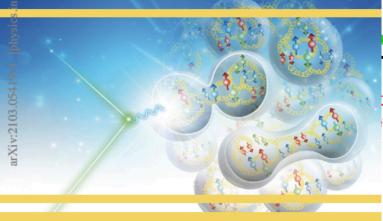
IR Layout and Acceptances

ZDC

Outgoing Hadror Details are published in the Yellow Report,

B2pf dipole


arXiv <u>https://arxiv.org/abs/2103.05419</u>



Roman pots (inside pipe)

Off-Momei Detectors

SCIENCE REQUIREMENTS
AND DETECTOR
CONCEPTS FOR THE
ELECTRON-ION COLLIDER
EIC Yellow Report

Q2pf quadru	ıpole
Q1ap	of quadrupole
	B0apf dipole
ector	

t bore)

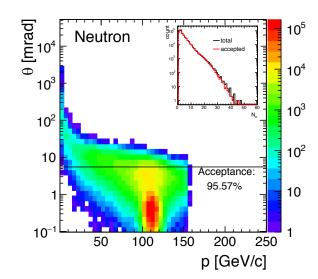
drupole

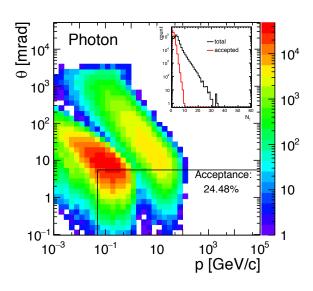
B0pf	dipole

	Angular accept. [mrad]
ZDC @ ~30m	θ <5.5 (η >

Off-Momentum	$0.0 < \theta < 5.0$ (η
Detectors	

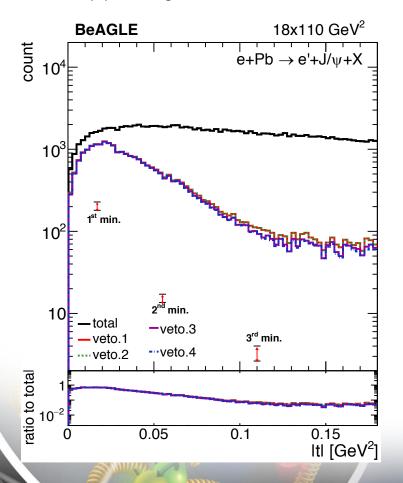
B0 forward	$5.5 < \theta < 20.0$
spectrometer	(4.6 < n < 5.9)


High p_T


Protons, neutrons and photons $\theta vs. p$ distribution

The scattering angle as fct. of the total momentum for photons, protons, neutrons in BeAGLE generator. The guided lines are the approximate acceptance for detecting each particles.

Note: Every particle from the nucleus decay is shown \rightarrow events can appear several times



- Neutrons have a good acceptance with close to 95%.
- Protons acceptance is generally very good except at very large scattering angle and at very low momentum.
- Only 24% photons are within the ZDC angular acceptance. Most of the photons are currently outside of the ZDC → Integrate photon detection in BO → preshower within BO.

Vetoing Incoherent Events: Protons and Neutrons

The beam pipe is broken into sections to make it a bit easier to turn pieces on and off in the simulation.

→ Beam pipe design/material is critical

Beam pipe material:

beamPipeQuads: aluminum (thickness 1-2mm)
beamPipeBO: aluminum (thickness 1.5mm)
beamPipeRP: aluminum (thickness 2mm)
beamPipeZDC: aluminum (thickness 2mm)

The impact of the different detectors is studied by adding one requirement / cut after the other.

Veto.1:

no neutron in ZDC

Veto.2:

Veto1 + no proton in Roman Pots

Veto.3:

Veto2 + no proton in off-momentum detector


Veto.4:

Veto3 + no proton in BO

Survived event count	
Total events	100%
Cut1	16.81%
Cut2	16.81%
Cut3	16.29%
Cut4	15.77%

Phys.Rev. C87 (2013) 024913

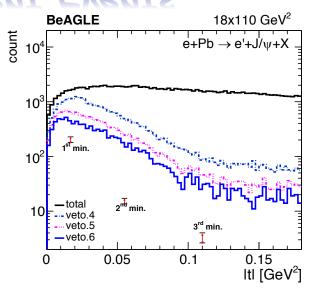
Vetoing Incoherent Events: Photons

Veto.5:

- Veto4 + no anything in preshower
 Veto.6:
- Veto5 + no photon E>50MeV in ZDC

Survived event count	
Total events	100%
Cut1	16.81%
Cut2	16.81%
Cut3	16.29%
Cut4	15.77%
Cut5	7.33%
Cut6	5.82%

With these requirements, the rejection power is found to be not enough to reach the three minimum positions.


10

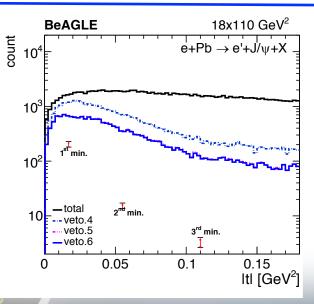
Vetoing Incoherent Events

Beam pipe material:

beamPipeQuads: aluminum

beamPipeBO: aluminum beamPipeRP: beryllium beamPipeZDC: beryllium

Survived event count	
Total events	100%
Cut1	16.7%
Cut2	16.7%
Cut3	16.18%
Cut4	15.66%
Cut5	7.3%
Cut6	4.96%


Beam pipe material:

beamPipeQuads: aluminum

beamPipeBO: aluminum

beamPipeRP: stainless steel

beamPipeZDC: stainless steel

Survived event count	
Total events	100%
Cut1	25.7%
Cut2	25.7%
Cut3	24.77%
Cut4	23.97%
Cut5	11.31%
Cut6	11.09%

Beam pipe material is critical to have good vetoing power

Summary

- \square coherent vector meson production $e + A \rightarrow e' + V + A$ very challenging measurement
- □ BeAGLE has been tuned successfully to several different measurements
- $lue{}$ Vetoing power of incoherent $e + A \rightarrow e' + V + X$ events depends critically on
 - > overall far forward acceptance for photons, neutron and protons
 - beam pipe design and material impacts the vetoing power
 - careful optimization obeying all the constraints from the accelerator is under way
 - Iteration with engineers on more up-to-date beam pipe design with input from the results of these simulations is under way
- Next steps
 - > integrate central detector in vetoing
 - investigate other possible avenues to increasing the vetoing power
 - tagging of heavier fragments

Summary

- \square coherent vector meson production $e + A \rightarrow e' + V + A$ very challenging measurement
- □ BeAGLE has been tuned successfully to several different measurements
- \Box Vetoing power of incoherent $e + A \rightarrow e' + V + X$ events depends critically on
 - > overall far forward acceptance for photons, neutron and protons
 - beam pipe design and material impacts the vetoing power
 - careful optimization obeying all the constraints from the accelerator is under way
 - Iteration with engineers on more up-to-date beam pipe design with input from the results of these simulations is under way
- Next steps
 - > integrate central detector in vetoing
 - > investigate other possible avenues to increasing the vetoing power
 - tagging of heavier fragments

Thank you!