Multiplicity dependence of quarkonium production

Quarkonia as Tools 2021 workshop

Manuel Guittière (IJCLab, LHCb collaboration) manuel.guittiere@lal.in2p3.fr

22/03/2021

Context of multiplicity differential studies

« Multiplicity » refers to the number of charged particles in the final state

- Dependent on the energy density (rising with collision energy and collision system size)
- Dominated by soft processes
- Characterizes the underlying event (UE) accompanying hard processes (e.g. quarkonia production)
- High multiplicities traditionally refers to HI collisions but also concerns smaller systems at LHC energies

Study of multiplicity dependence of quarkonium production

- → Interplay between hard and soft components of hadronic collisions
- → Role of multi-parton interactions (MPIs are necessary to describe both hard and soft components of high energy pp collisions)

Questions for quarkonia vs. multiplicity measurements

- Behavior wrt. collision energy and system size (pp/pA/AA)?
- Behavior when measuring multiplicity and quarkonia in different rapidity regions (rapidity gap or not, mid/forward)?
- Behavior wrt. probe's nature and hardness of production process (charm/beauty, open/closed, vs. p_T)?

Potential dissociation of quarkonia in the final state due to high multiplicity environment?

→Comparison of excited states wrt. ground state

Influence of collision energy (pp collisions)

- Results compatible for J/ ψ at 7 and 13TeV (without rapidity gap: J/ ψ and multiplicity a midrapidity)
- Results compatible for J/ψ at 5.02 and 13TeV (with rapidity gap: J/ψ at forward rapidity and multiplicity at mid-rapidity)
- \rightarrow No energy dependence observed for J/ ψ in pp collisions

Influence of collision energy and system size (p-Pb)

- Results compatible for J/ψ at 5.02 and 8.16 TeV → no significant energy dependence observed
- Backward rapidity: consistent with linear increase (consistent with pp results)
- Forward rapidity: suppression increases with multiplicity (consistent with Cold Nuclear Matter effect scenario i.e. modification/suppression of J/ψ)
- \rightarrow No energy dependence for J/ ψ in p-Pb collisions, observation of the influence of the initial state (p-Pb at backward rapidity \neq pp)

Influence of collision system size (bottomonia)

- Significantly higher increase of $\Upsilon(1S)$ production in pp than in p-Pb and Pb-Pb without rapidity gap (bottomonia and multiplicity measured at mid-rapidity)
- Weaker increase for Y(2S) (larger uncertainties)

Influence of collision system size and rapidity gap

- Stronger increase of D meson production with multiplicity in pp than p-Pb in both cases
- Significant reduction of D meson production with rapidity gap (right) for pp and p-Pb collisions

Rapidity dependence (pp collisions at 13TeV)

- All measurements at forward rapidity (with rapidity-gap) compatible with linear increase with multiplicity
- J/ψ at mid-rapidity (without rapidity-gap) shows stronger than linear increase with multiplicity

Rapidity dependence of J/ψ vs multiplicity

PLB810(2020)135758

- Same behavior observed with 2 different event multiplicity classifications: SPD (mid rapidity) and V0 (forward rapidity)
 → excluding auto-correlation mechanisms
- Various mechanisms (Color string reconnection (CSR), percolation, gluon saturation, CPP, 3-gluon fusion) responsible for stronger suppression of soft processes (N_{ch}) than hard processes (J/ψ) could explain this behavior

Influence of the hardness of the probe

- Hints of dependence on average D mesons p_T (not significant considering uncertainties) for pp collisions at 7TeV (mid-rapidity)
- More significant dependence on $J/\psi p_T$ observed for pp collisions at 13TeV (mid-rapidity)
- Behavior qualitatively reproduced by different models (PYTHIA, EPOS, CPP)

Excited/ground state (charmonia in pp at 13TeV)

- Charmonia measured at forward rapidity, multiplicity at mid-rapidity (gap)
- No significant deviation from unity observed considering the uncertainties
- Data compatible with predictions from comovers model (~1σ) on the covered multiplicity range
- Would be interesting to perform the measurement on prompt charmonia, with and without a rapidity-gap
- → ALICE MFT upgrade (Run3) will make it possible and reduce the uncertainties

Excited/ground states (bottomonia in pp at 7TeV)

- Relative multiplicity dependent suppression of Y excited states wrt the ground state reported by the CMS collaboration (without rapidity gap)
- Differential measurements as a function of the Υ isolation (right): number of tracks in a cone around the Υ momentum direction with $\Delta_R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.5$
- \rightarrow No significant difference observed in trend of the ratio from $N_{track}^{\Delta R}=0$ to $N_{track}^{\Delta R}>2$
- →Not in good agreement with expectations from a comover dissociation scenario?

Summary

- No energy dependence on quarkonia vs multiplicity observed (with relative quantities)
- Behavior of the multiplicity dependence seems independent of the nature/mass of the probe
- Different behaviors observed in different rapidity regions
- \rightarrow Possible explanation in the case of J/ ψ in pp 13TeV at mid-rapidity: different mechanisms (Color string reconnection (CSR), percolation, gluon saturation, coherent particle production (CPP), 3-gluon fusion) responsible for a higher suppression of the soft processes than hard ones
- p_T dependence observed for J/ ψ vs multiplicity at mid-rapidity (pp 13TeV)

Excited/ground states

- Charmonia in pp at 13TeV (ALICE): no significant relative suppression of ψ(2S) observed wrt J/ψ at high multiplicity (uncertainties: no strong conclusion)
- Bottomonia in pp at 7TeV (CMS): multiplicity dependent suppression of Y excited states observed wrt the ground state
- → Differential (isolation) study not in good agreement with comover scenario?

Perspectives

ALICE MFT upgrade for Run3

- Measurement of prompt charmonia at forward rapidity
- Direct multiplicity measurement at forward rapidity
- Reduction of uncertainties (improvement of S/B ratio)

LHCb

- High precision measurements of bottomonia and prompt charmonia vs multiplicity at forward rapidity accessible
- Extended p_T coverage with Magnet Tracking Stations (installation during LS3)

CMS

- Measurement of bottomonia in pp collisions at 13TeV (higher multiplicity) with differential studies at mid-rapidity
- → It would be interesting to have measurements in KNO variables (Koba-Nielsen-Olesen: relative yield and relative multiplicity) from all experiments to ease the comparisons

Thank you!

Results presented

State	Channel	System	Energy	Experiment	Reference
D ⁰ , D ⁺ , D [*] +	Hadronic decay, y < 0.5	pp	7 TeV	ALICE	JHEP09(2015)148
D ⁰ , D ⁺ , D [*] +	Hadronic decay, -0.96 < y _{cms} < -0.04	p-Pb	5.02 TeV	ALICE	JHEP08(2016)078
J/ψ	μ+μ-, 2.5 < y < 4	рр	5.02 TeV	ALICE	Preliminary
J/ψ	 e+e-, y < 0.9 μ+μ-, 2.5 < y < 4 	рр	13 TeV	ALICE	- PLB810(2020)135758 - Preliminary
J/ψ	$\mu^+\mu^-$, -4.46 < y_{cms} < -2.96 (Pb-going) 2.03 < y_{cms} < 3.53 (p-going)	p-Pb	5.02 TeV	ALICE	PLB776(2018)91-104
J/ψ	$\mu^+\mu^-$, -4.46 < y_{cms} < -2.96 (Pb-going) 2.03 < y_{cms} < 3.53 (p-going)	p-Pb	8.16 TeV	ALICE	JHEP09(2020)162
ψ(2S)	μ+μ ⁻ , 2.5 < y < 4	рр	13 TeV	ALICE	Preliminary
Y(1S)/Y(2S)/Y(3S)	μ+μ-, y < 1.93	рр	2.76 TeV	CMS	<u>JHEP04(2014)103</u>
Y(1S)/Y(2S)/Y(3S)	μ+μ-, y < 1.2	рр	7 TeV	CMS	JHEP11(2020)001
Y(1S)/Y(2S)/Y(3S)	μ+μ-, y < 1.93	p-Pb	5.02 TeV	CMS	JHEP04(2014)103
Y(1S)/Y(2S)/Y(3S)	μ+μ-, y < 2.4	Pb-Pb	2.76 TeV	CMS	PRL109(2012)222301