

# Exploring $J/\psi$ production mechanism at the future Electron-Ion Collider

Xiang-Peng Wang

In collaboration with Jian-Wei Qiu and Hongxi Xing, arXiv:2005.10832

Virtual Quarkonium As Tools 2021

March 22, 2021



Motivations

Factorization formula & NLO calculations

Results & phenomenology



#### Motivations

Factorization formula & NLO calculations

Results & phenomenology



#### Motivations:

- Quarkonium serves as an ideal laboratory to study QCD both in perturbative and non-perturbative region because of its large mass and non-relativistic nature
- ▶ It's fair to say that the  $J/\psi$  production mechanism is still not clear since its discovery in 1974
- ▶ Although the non-relativistic QCD (NRQCD) factorization approach has achieved tremendous successes in describing quarkonium production and decay, there are still some long standing problems such as the polarization of the produced  $J/\psi$  in hadron colliders
- ▶ Resolve the differences among the various sets of non-perturbative long distance matrix elements (LDMEs) extracted from the world data
- ▶  $J/\psi$  can be used as an excellent probe to QCD matter.

Motivations

Factorization formula & NLO calculations

Results & phenomenology



# Factorization for $e + h \rightarrow J/\psi(p) + X$

#### Factorization formula:

$$\frac{d\sigma_{eh\to J/\psi(p)}}{dp_T d\eta} = \sum_{a,b,n} \int \frac{dx_a}{x_a} \frac{dx_b}{x_b} f_{a/e}(x_a, \mu_f^2) f_{b/h}(x_b, \mu_f^2) 
\times \hat{\sigma}_{ab\to c\bar{c}[n]}(x_a, x_b, p_T, \eta, m_c, \mu_f^2) \langle \mathcal{O}_{[n]}^{J/\psi} \rangle.$$
(1)

- ▶ QCD  $(f_{b/h})$  and QED  $(f_{a/h})$  collinear factorization are applied to colliding hadron and electron, respectively;
- ▶  $\langle \mathcal{O}_{[n]}^{J/\psi} \rangle$  NRQCD factorization is used to describe the hadronization of produced  $c\bar{c}[n]$  pair to a physical  $J/\psi$ ;
- ▶ The inclusiveness from not measuring the final state electron helps us to eliminate a major uncertainty of QED rediative corrections in SIDIS [Liu, Melnitchouk, Qiu & Sato, arXiv:2008.02895].

# Leading order



Figure: Leading order Feynman diagrams for  $J/\psi$  production in eh collisions.

$$\frac{d\sigma^{LO}}{dp_T d\eta} = \sum_{n=1S_0^{[8]}, 3P_L^{[8]}} \int \frac{dx_b}{x_b} f_{g/h}(x_b, \mu_f^2) \hat{\sigma}_{e+g \to c\bar{c}[n]}^{(2,1)} \langle \mathcal{O}_{[n]}^{J/\psi} \rangle. \tag{2}$$

Only color octet  ${}^1S_0^{[8]}$  and  ${}^3P_J^{[8]}$  channels can contribute to high  $p_T$   $J/\psi$  production in eh collisions at leading order!(Get better information on  $\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$  and  $\langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]})\rangle$ .)



# Next-to-leading order

$$d\sigma^{NLO} = \sum_{b,n} \int \frac{dx_a}{x_a} \frac{dx_a}{x_a} \left[ f_{e/e}(x_a) \hat{\sigma}_{eb \to c\bar{c}[n]}^{(2,2)} + f_{\gamma/e}(x_a) \hat{\sigma}_{\gamma b \to c\bar{c}[n]}^{(1,2)} \right] f_{b/h}(x_b) \langle \mathcal{O}_{[n]}^{J/\psi} \rangle, \tag{3}$$

$$f_{e/e}(x,\mu_f^2) = \delta(1-x_a), \ f_{\gamma/e}(x,\mu_f^2) = \frac{\alpha}{2\pi} \frac{1+(1-x)^2}{x} \left[ \ln \frac{\mu_f^2}{x^2 m_e^2} - 1 \right]. \tag{4}$$

Figure: NLO Feynman diagrams for real contribution.

# Next-to-leading order

We adopt the dipole subtraction method, recently developed specifically for heavy quarkonium production to extract the soft, collinear divergences in real corrections. [M. Butenschoen & B. A. Kniehl, Nucl. Phys. **B950**, 114843 (2020)]



Figure: Virtual corrections to  ${}^{1}S_{0}^{[8]}$  and  ${}^{3}P_{J}^{[8]}$  channels.

Motivations

Factorization formula & NLO calculations

Results & phenomenology



# Parameter settings

Table:  $J/\psi$  NRQCD LDMEs from four different groups.

|             | $\langle \mathcal{O}(^3S_1^{[1]})\rangle$ $\text{GeV}^3$ | $\begin{array}{c} \langle \mathcal{O}(^1S_0^{[8]}) \rangle \\ 10^{-2} \text{ GeV}^3 \end{array}$ | $\begin{array}{c} \langle \mathcal{O}(^3S_1^{[8]}) \rangle \\ 10^{-2} \text{ GeV}^3 \end{array}$ | $\langle \mathcal{O}(^{3}P_{0}^{[8]})\rangle$<br>$10^{-2} \text{ GeV}^{5}$ |
|-------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Bodwin      | 0                                                        | 9.9                                                                                              | 1.1                                                                                              | 1.1                                                                        |
| Butenschoen | 1.32                                                     | 3.04                                                                                             | 0.16                                                                                             | -0.91                                                                      |
| Chao        | 1.16                                                     | 8.9                                                                                              | 0.30                                                                                             | 1.26                                                                       |
| Gong        | 1.16                                                     | 9.7                                                                                              | -0.46                                                                                            | -2.14                                                                      |

We use CT14-nlo for unpolarized proton PDFs [S. Dulat  $et\ al.$ , Phys. Rev. D  ${\bf 93},\ 033006\ (2016)$ ].

$$\sqrt{s} = 141.4 \,\text{GeV}, \ \mu_r = \mu_f = \sqrt{p_T^2 + M_{J/\psi}^2}, \ M_{J/\psi} = 2m_c = 3.1 \,\text{GeV},$$
 (5)

$$n_f = 3, |\eta| < 4, 3 \text{ GeV} < p_T < 15 \text{ GeV}.$$
 (6)



## $p_T$ distribution at NLO



Figure: The green band shows the uncertainty from scale variation  $\sqrt{p_T^2+M^2}/2<\mu_f<2\sqrt{p_T^2+M^2}$ .

#### Remarks and comments

- ▶ The cross section is large enough for producing sufficient (>1000)  $J/\psi$  events at the future EIC:
- ▶ There is almost an order of magnitude difference in production rate between Bodwin/Chao and Butenschoen, which clearly demonstrates the discriminative power of this new observable on  $J/\psi$  production mechanism;
- ▶ We used leading logarithmic approximation for the photon distribution in an electron  $(f_{\gamma/e})$ , the 70% contribution from quasi-real photon channel should be reduced once we consider the resummed photon distribution, but not in a significant way;
- ▶ The large K-factor at NLO comes from the dominated quasi-real photon channel as it first appear at NLO, such large K-factor is expected to be reduced when NNLO contribution is included.

# Without quasi-real photon contribution ( $Q^2 > 1$ Gev)



Figure: The middle panel shows the fraction from initial gluon channel.

▶ Initial gluon channel dominates, which makes  $J/\psi$  production in eh collisions a good observable to probe the initial gluon distribution.

### Contributions from different channels



Figure: Contributions from four different  $c\bar{c}$  states, respectively.

- ▶  ${}^1S_0^{[8]}$  channel dominates, which indicates  $J/\psi$  produce in eh collision will likely be unpolarized;
- Extending this study to electron-nucleus collisions at the EIC,  ${}^{1}S_{0}^{[8]}$  dominance will provide us a unique channel to study how a color octet  $c\bar{c}$  state interacts with nuclear medium when it propagates through a large nucleus.

Motivations

Factorization formula & NLO calculations

Results & phenomenology



- ▶ We proposed to measure the  $p_T$  distribution of inclusive  $J/\psi$  production in the electron-hadron frame at the future EIC without tagging the outgoing electron;
- ▶ Without tagging the outgoing electron, this observable will not be sensitive to the major uncertainty from QED radiative corrections in the traditional SIDIS;
- ▶ We performed explicit calculations up to NLO in  $\alpha_s$  and found that the existing four sets of NRQCD LDMEs give very different predictions for this new proposed observable, which clearly demonstrates the discriminative power of this new observable on  $J/\psi$  production mechanism;
- ▶ Initial gluon dominance could provide even more opportunities to probe initial-state gluon distribution in nucleon or nucleus;
- ▶ The  ${}^1S_0^{[8]}$  channel dominance not only provides a solid prediction that  $J/\psi$  produced in eh collisions will likely be unpolarized, but also serves a good channel to study how a color-octet  $c\bar{c}$  state propagates through the nuclear medium.