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Physical picture of the energy momentum tensor

• The proton matrix element of the energy-momentum tensor (EMT) can be
parametrised in terms of five gravitational form factors (GFFs) - for parton of type a

Gravitational form factors

〈p′, s ′|Tµν
a |p, s〉 = ū(p′, s ′)

{
PµPν

M
Aa(t, µ2) +

∆µ∆ν − ηµν∆2

M
Ca(t, µ2) + MηµνC̄a(t, µ2)

+
P{µiσν}ρ∆ρ

4M

[
Aa(t, µ2) + Ba(t, µ2)

]
+

P [µiσν]ρ∆ρ

4M
Da(t, µ2)

}
u(p, s)

(1)

where

∆ = p′ − p, t = ∆2, P =
p + p′

2
(2)
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Physical picture of the energy momentum tensor

In the Breit frame (~P = 0, t = −~∆2),
radial distributions of energy and
momentum in the proton are described by
Fourier transforms of the GFFs w.r.t.
variable ~∆.

• Simplest such distribution: radial pressure anisotropy profile

sa(r , µ2) = −4M

r2

∫
d3~∆

(2π)3
e−i

~∆·~r t
−1/2

M2

2

t2

[
t5/2 Ca(t, µ2)

]
(3)

• Energy radius of the proton

〈r2〉E = 6
∑

parton type a

[
dAa

dt
(0, µ2)− Ca(0, µ2)

M2

]
(4)
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Relation to generalised parton distributions

• Remarkably, GFFs can be accessed through generalised parton distributions (GPDs) –
non-perturbative objects encompassing usual parton distribution functions (PDFs) and
elastic form factors (EFFs) → multi-dimensional information on hadron structure

• There are four leading-twist chiral-even GPDs for each parton type inside the proton,
noted Ha, E a, H̃a and Ẽ a, which depend on three variables (x , ξ, t) and a scale µ2

• Four GFFs can be extracted from those GPDs through, e.g. for quarks∫ 1

−1
dx x Hq(x , ξ, t, µ2) = Aq(t, µ2) + 4ξ2Cq(t, µ2) (5)

∫ 1

−1
dx x Eq(x , ξ, t, µ2) = Bq(t, µ2)− 4ξ2Cq(t, µ2) (6)

∑
q

∫ 1

−1
dx H̃q(x , ξ, t, µ2) = −

∑
q

Dq(t, µ2) (7)
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Relation to generalised parton distributions

• The last GFF C̄a(t, µ2) can be linked to higher-twist GPDs, and can be studied by heavy
quarkonium production at threshhold [e.g. Joosten, Meziani, 2018]

• Leading-twist GPDs are conveniently accessed through several exclusive processes, like
deeply virtual Compton scattering (DVCS): production of a real photon in the
scattering of a deeply virtual photon on a hadron target → direct sensitivity to quark
GPDs at LO

Tree-level depiction of DVCS for x > |ξ| (left) and ξ > |x | (right)
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Relation to generalised parton distributions

• Direct sensitivity to gluon GPDs at LO can be provided by quarkonium production in
ultra-peripheral collisions (UPC), especially interesting in the very-low ξ (low xB
region) at the LHC [Chapon et. al., 2020] → unique possibility to access directly E g

J/ψ photoproduction in UPC (from C.
Mezrag)

• Analysis of different processes
(DVCS, quarkonium production,
TCS, DVMP, ...) and different
observables sensitive to different
GPDs is the way to a precise
extraction of proton mechanical
properties.
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Extraction from a global DVCS analysis

• DVCS observables can be parametrised in terms of Compton form factors (CFFs) F ,
which write as convolutions of perturbative coefficient functions T a

F and the GPDs F a:

CFF convolution (leading twist)

F(ξ, t,Q2) =
∑

parton type a

∫ 1

−1

dx

ξ
T a
F

(
x

ξ
,
Q2

µ2
, αs(µ2)

)
F a(x , ξ, t, µ2)a (8)

aF g (x , ξ, t, µ2)/x for the usual definition of gluon GPD

• Extracting GPDs from the convolution of eq. (8) is a tedious issue, but we can access
information via the dispersion relations

LO dispersion relations

CH(t,Q2) = ReH(ξ, t,Q2)− 1

π

∫ 1

0
dξ′ ImH(ξ′, t,Q2)

(
1

ξ − ξ′
− 1

ξ + ξ′

)
(9)
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Extraction from a global DVCS analysis

• At LO, the subtraction constant CH(t,Q2) can be linked to the so-called D-term by

CH(t,Q2) = 2
∑
q

e2
q

∫ 1

−1
dz

Dq
term(z , t,Q2)

1− z
(10)

and from ∫ 1

−1
dx x Hq(x , ξ, t, µ2) = Aq(t, µ2) + 4ξ2Cq(t, µ2) (11)

we find that the GFF Cq(t, µ2) is linked to this D-term by∫ 1

−1
dz zDq

term(z , t, µ2) = 4Cq(t, µ2) (12)

GFF Ca extraction

Experiment → CFF H/E → subtraction constant → integral over D-term → GFF Ca
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Extraction from a global DVCS analysis

• How to get from∫ 1

−1
dz

Dq
term(z , t, µ2)

1− z
to

∫ 1

−1
dz zDq

term(z , t, µ2) ? (13)

Through the known evolution of the D-term with scale! Let’s expand the D-term in the
Gegenbauer polynomial basis

Dq
term(z , t, µ2) = (1− z2)

∑
odd n

dq
n (t, µ2)C

3/2
n (z) (14)

Then

GFF Ca extraction

∫ 1

−1
dz

Dq
term(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) and

∫ 1

−1
dz zDq

term(z , t, µ2) =
4

5
d1(t, µ2) (15)
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Extraction from a global DVCS analysis

GFF Ca extraction

∫ 1

−1
dz

Dq
term(z , t, µ2)

1− z
= 2

∑
odd n

dq
n (t, µ2) and

∫ 1

−1
dz zDq

term(z , t, µ2) =
4

5
d1(t, µ2) (16)

• Each term dq
n (t, µ2) evolves with µ2 in an independent way, which allows to separate the

different terms of the sum on the left, if the subtraction constant is known precisely on a
large enough lever-arm in Q2.

• In practice, we have to rely on various degrees of modelling to perform this separation.

11 / 18



Results

1. CFF extraction from a global analysis of world DVCS data is performed in [Moutarde,
Sznajder, Wagner, 2019] thanks to a neural network (NN) parametrization of CFFs.
Replicas of the NN are freely accessible on PARTONS (http://partons.cea.fr/)

2. For each NN replica, a subtraction constant is computed (grey band).

3. Among several simplifications, the most notable are 1) assuming all dq
n (t, µ2) = 0 but

dq
1 (t, µ2), and 2) using a model of t-dependence of dq

1 (t, µ2). A very detailed account of
all assumptions is made in [Dutrieux et. al., 2021]. Fitting the subtraction constant with
these assumptions gives the green band.

4. Since pressure profiles are obtained by Fourier transform w.r.t. variable ~∆, and t = −~∆2,
assuming a given t-dependence essentially amounts to assuming the general shape of the
obtained profile.
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Results

Results obtained for
∑

q d
q
1 (t = 0, µ2) = 5

∑
q Cq(t = 0, µ2)
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Relaxing assumptions

• If we relax our assumptions, the uncertainty on the extraction of d1 increases further
notably.

• Allowing a simultaneous fit of dq
1 and dq

3 shows a very large correlation of uncertainties
dq

1 ≈ −d
q
3 , increasing the uncertainty on d1 by a factor 20 at µ2

F = 2 GeV2

• Indeed, if dq
1 ≈ −d

q
3 and all other dq

n are 0 over the range of experimental data, the
subtraction constant is numerically very small, but the d1 term is not.

• The gluon sector has been radiatively generated in this study from a low factorisation
scale. When gluons are fitted independently, their uncertainty is 2 orders of magnitude
larger than that of quarks.
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Conclusion

• With current kinematic spread and precision of experimental data, extracted GFFs are
compatible with 0 for flexible CFF parametrizations.

• Relaxing our further modelling assumptions results in a considerable increase of
uncertainties. Observables directly sensitive to certains GPDs (especially gluons at LO)
and a diversification of experimental processes will be very beneficial.

• An extension of the kinematic domain is required to properly extract d1 from the other
terms in the expansion. This requires future experiments at EIC or EIcC. More precise
data from JLab and CERN will also improve the picture.
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