Phenomenological assessment of proton mechanical properties

Hervé Dutrieux

herve.dutrieux@cea.fr - PhD student - supervisor: H. Moutarde Collaboration with C. Lorcé, H. Moutarde, P. Sznajder, A. Trawinski, J. Wagner

Quarkonia As Tools, March 23rd, 2021

Overview

- 1. Physical picture of the energy momentum tensor
- 2. Relation to generalised parton distributions
- 3. Extraction from a global DVCS analysis
- 4. Results
- 5. Conclusion

Physical picture of the energy momentum tensor

 The proton matrix element of the energy-momentum tensor (EMT) can be parametrised in terms of five gravitational form factors (GFFs) - for parton of type a

Gravitational form factors

$$\langle p', s' | T_{a}^{\mu\nu} | p, s \rangle = \bar{u}(p', s') \left\{ \frac{P^{\mu}P^{\nu}}{M} A_{a}(t, \mu^{2}) + \frac{\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}}{M} C_{a}(t, \mu^{2}) + M\eta^{\mu\nu}\bar{C}_{a}(t, \mu^{2}) + \frac{P^{\{\mu}i\sigma^{\nu\}\rho}\Delta_{\rho}}{4M} \left[A_{a}(t, \mu^{2}) + B_{a}(t, \mu^{2}) \right] + \frac{P^{[\mu}i\sigma^{\nu]\rho}\Delta_{\rho}}{4M} D_{a}(t, \mu^{2}) \right\} u(p, s)$$
(1)

where

$$\Delta = p' - p$$
, $t = \Delta^2$, $P = \frac{p + p'}{2}$

Physical picture of the energy momentum tensor

$$T^{\mu\nu} = \begin{bmatrix} \frac{\mathsf{Energy}}{\mathsf{density}} & \frac{\mathsf{Momentum}}{\mathsf{density}} \\ \frac{\mathsf{T}^{00}}{\mathsf{T}^{01}} & \frac{\mathsf{T}^{01}}{\mathsf{T}^{02}} & \frac{\mathsf{T}^{03}}{\mathsf{T}^{31}} \\ \frac{\mathsf{T}^{20}}{\mathsf{T}^{30}} & \frac{\mathsf{T}^{21}}{\mathsf{T}^{31}} & \frac{\mathsf{T}^{22}}{\mathsf{T}^{23}} \\ \frac{\mathsf{T}^{30}}{\mathsf{T}^{31}} & \frac{\mathsf{T}^{32}}{\mathsf{T}^{33}} & \frac{\mathsf{Shear stress}}{\mathsf{Normal stress}} \\ \vdots \\ \frac{\mathsf{Energy}}{\mathsf{flux}} & \frac{\mathsf{Momentum}}{\mathsf{flux}} & \mathit{from C. Lorc\'e} \end{bmatrix}$$

In the Breit frame ($\vec{P}=0$, $t=-\vec{\Delta}^2$), radial distributions of energy and momentum in the proton are described by Fourier transforms of the GFFs w.r.t. variable $\vec{\Delta}$.

Simplest such distribution: radial pressure anisotropy profile

$$s_{a}(r,\mu^{2}) = -\frac{4M}{r^{2}} \int \frac{\mathrm{d}^{3}\vec{\Delta}}{(2\pi)^{3}} e^{-i\vec{\Delta}\cdot\vec{r}} \frac{t^{-1/2}}{M^{2}} \frac{2}{t^{2}} \left[t^{5/2} C_{a}(t,\mu^{2}) \right]$$
(3)

Energy radius of the proton

$$\langle r^2 \rangle_E = 6 \sum_{\text{parton type } a} \left[\frac{\mathrm{d} A_a}{\mathrm{d} t} (0, \mu^2) - \frac{C_a(0, \mu^2)}{M^2} \right]$$

Relation to generalised parton distributions

- Remarkably, GFFs can be accessed through generalised parton distributions (GPDs) –
 non-perturbative objects encompassing usual parton distribution functions (PDFs) and
 elastic form factors (EFFs) → multi-dimensional information on hadron structure
- There are four leading-twist chiral-even GPDs for each parton type inside the proton, noted H^a , E^a , \widetilde{H}^a and \widetilde{E}^a , which depend on three variables (x, ξ, t) and a scale μ^2
- Four GFFs can be extracted from those GPDs through, e.g. for quarks

$$\int_{-1}^{1} dx \, x \, H^{q}(x, \xi, t, \mu^{2}) = A_{q}(t, \mu^{2}) + 4\xi^{2} C_{q}(t, \mu^{2}) \tag{5}$$

$$\int_{-1}^{1} dx \, x \, E^{q}(x, \xi, t, \mu^{2}) = B_{q}(t, \mu^{2}) - 4\xi^{2} C_{q}(t, \mu^{2}) \tag{6}$$

$$\sum_{q} \int_{-1}^{1} dx \, \widetilde{H}^{q}(x, \xi, t, \mu^{2}) = -\sum_{q} D_{q}(t, \mu^{2})$$

Relation to generalised parton distributions

- The last GFF $\bar{C}_a(t, \mu^2)$ can be linked to higher-twist GPDs, and can be studied by **heavy** quarkonium production at threshhold [e.g. Joosten, Meziani, 2018]
- Leading-twist GPDs are conveniently accessed through several exclusive processes, like
 deeply virtual Compton scattering (DVCS): production of a real photon in the
 scattering of a deeply virtual photon on a hadron target → direct sensitivity to quark
 GPDs at LO

Relation to generalised parton distributions

• Direct sensitivity to gluon GPDs at LO can be provided by **quarkonium production in ultra-peripheral collisions (UPC)**, especially interesting in the very-low ξ (low x_B region) at the LHC [Chapon *et. al.*, 2020] \rightarrow unique possibility to access directly E^g

 J/ψ photoproduction in UPC (from C. Mezrag)

 Analysis of different processes (DVCS, quarkonium production, TCS, DVMP, ...) and different observables sensitive to different GPDs is the way to a precise extraction of proton mechanical properties.

• DVCS observables can be parametrised in terms of Compton form factors (CFFs) \mathcal{F} , which write as convolutions of perturbative coefficient functions \mathcal{T}_E^a and the GPDs F^a :

CFF convolution (leading twist)

$$\mathcal{F}(\xi, t, Q^2) = \sum_{\text{parton type } a} \int_{-1}^{1} \frac{\mathrm{d}x}{\xi} \, T_F^a \left(\frac{x}{\xi}, \frac{Q^2}{\mu^2}, \alpha_s(\mu^2) \right) F^a(x, \xi, t, \mu^2)^a \tag{8}$$

 ${}^{a}F^{g}(x,\xi,t,\mu^{2})/x$ for the usual definition of gluon GPD

• Extracting GPDs from the convolution of eq. (8) is a tedious issue, but we can access information via the **dispersion relations**

LO dispersion relations

$$C_{\mathcal{H}}(t,Q^2) = \operatorname{Re} \mathcal{H}(\xi,t,Q^2) - \frac{1}{\pi} \int_0^1 d\xi' \operatorname{Im} \mathcal{H}(\xi',t,Q^2) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'} \right)$$
(9)

• At LO, the subtraction constant $C_H(t, Q^2)$ can be linked to the so-called **D-term** by

$$C_H(t, Q^2) = 2\sum_{q} e_q^2 \int_{-1}^1 dz \, \frac{D_{\text{term}}^q(z, t, Q^2)}{1 - z}$$
 (10)

and from

$$\int_{-1}^{1} dx \, x \, H^{q}(x, \xi, t, \mu^{2}) = A_{q}(t, \mu^{2}) + 4\xi^{2} C_{q}(t, \mu^{2}) \tag{11}$$

we find that the GFF $C_a(t, \mu^2)$ is linked to this D-term by

$$\int_{-1}^{1} dz \, z D_{\text{term}}^{q}(z, t, \mu^{2}) = 4C_{q}(t, \mu^{2}) \tag{12}$$

GFF C_a extraction

 $\mathsf{Experiment} \to \mathsf{CFF} \ \mathcal{H}/\mathcal{E} \to \mathsf{subtraction} \ \mathsf{constant} \to \mathsf{integral} \ \mathsf{over} \ \mathsf{D}\text{-term} \to \mathsf{GFF} \ \mathit{C_a}$

How to get from

$$\int_{-1}^{1} dz \, \frac{D_{\text{term}}^{q}(z, t, \mu^{2})}{1 - z} \quad \text{to} \quad \int_{-1}^{1} dz \, z D_{\text{term}}^{q}(z, t, \mu^{2}) ? \tag{13}$$

Through the known evolution of the D-term with scale! Let's expand the D-term in the Gegenbauer polynomial basis

$$D_{\text{term}}^{q}(z,t,\mu^{2}) = (1-z^{2}) \sum_{\text{odd } n} d_{n}^{q}(t,\mu^{2}) C_{n}^{3/2}(z)$$
 (14)

Then

GFF C_a extraction

$$\int_{-1}^{1} dz \, \frac{D_{\text{term}}^{q}(z, t, \mu^{2})}{1 - z} = 2 \sum_{\text{odd } n} d_{n}^{q}(t, \mu^{2}) \quad \text{and} \quad \int_{-1}^{1} dz \, z D_{\text{term}}^{q}(z, t, \mu^{2}) = \frac{4}{5} \, d_{1}(t, \mu^{2}) \quad (15)$$

GFF C_a extraction

$$\int_{-1}^{1} dz \, \frac{D_{\text{term}}^{q}(z, t, \mu^{2})}{1 - z} = 2 \sum_{\text{odd } n} d_{n}^{q}(t, \mu^{2}) \quad \text{and} \quad \int_{-1}^{1} dz \, z D_{\text{term}}^{q}(z, t, \mu^{2}) = \frac{4}{5} \, d_{1}(t, \mu^{2}) \quad (16)$$

- Each term $d_n^q(t, \mu^2)$ evolves with μ^2 in an independent way, which allows to separate the different terms of the sum on the left, if the subtraction constant is known precisely on a large enough lever-arm in Q^2 .
- In practice, we have to rely on various degrees of modelling to perform this separation.

1. **CFF extraction** from a global analysis of world DVCS data is performed in [Moutarde, Sznajder, Wagner, 2019] thanks to a **neural network (NN) parametrization** of CFFs. Replicas of the NN are freely accessible on PARTONS (http://partons.cea.fr/)

- 1. **CFF extraction** from a global analysis of world DVCS data is performed in [Moutarde, Sznajder, Wagner, 2019] thanks to a **neural network (NN) parametrization** of CFFs. Replicas of the NN are freely accessible on PARTONS (http://partons.cea.fr/)
- 2. For each NN replica, a subtraction constant is computed (grey band).

- 1. **CFF extraction** from a global analysis of world DVCS data is performed in [Moutarde, Sznajder, Wagner, 2019] thanks to a **neural network (NN) parametrization** of CFFs. Replicas of the NN are freely accessible on PARTONS (http://partons.cea.fr/)
- 2. For each NN replica, a subtraction constant is computed (grey band).
- 3. Among several simplifications, the most notable are 1) assuming all $d_n^q(t,\mu^2) = 0$ but $d_1^q(t,\mu^2)$, and 2) using a model of t-dependence of $d_1^q(t,\mu^2)$. A very detailed account of all assumptions is made in [Dutrieux et. al., 2021]. Fitting the subtraction constant with these assumptions gives the green band.

- 1. **CFF** extraction from a global analysis of world DVCS data is performed in [Moutarde, Sznajder, Wagner, 2019] thanks to a **neural network (NN) parametrization** of CFFs. Replicas of the NN are freely accessible on PARTONS (http://partons.cea.fr/)
- 2. For each NN replica, a subtraction constant is computed (grey band).
- 3. Among several simplifications, the most notable are 1) assuming all $d_n^q(t,\mu^2) = 0$ but $d_1^q(t,\mu^2)$, and 2) using a model of t-dependence of $d_1^q(t,\mu^2)$. A very detailed account of all assumptions is made in [Dutrieux et. al., 2021]. Fitting the subtraction constant with these assumptions gives the green band.
- 4. Since pressure profiles are obtained by Fourier transform w.r.t. variable $\vec{\Delta}$, and $t = -\vec{\Delta}^2$, assuming a given t-dependence essentially amounts to assuming the general shape of the obtained profile.

Results obtained for $\sum_q d_1^q(t=0,\mu^2)=5\sum_q C_q(t=0,\mu^2)$

Relaxing assumptions

- If we relax our assumptions, the uncertainty on the extraction of d₁ increases further notably.
- Allowing a simultaneous fit of d_1^q and d_3^q shows a very large correlation of uncertainties $d_1^q \approx -d_3^q$, increasing the uncertainty on d_1 by a factor 20 at $\mu_F^2 = 2 \text{ GeV}^2$

- Indeed, if $d_1^q \approx -d_3^q$ and all other d_n^q are 0 over the range of experimental data, the subtraction constant is numerically very small, but the d_1 term is not.
- The gluon sector has been radiatively generated in this study from a low factorisation scale. When gluons are fitted independently, their uncertainty is 2 orders of magnitude larger than that of quarks.

Conclusion

- With current kinematic spread and precision of experimental data, extracted GFFs are compatible with 0 for flexible CFF parametrizations.
- Relaxing our further modelling assumptions results in a considerable increase of uncertainties. Observables directly sensitive to certains GPDs (especially gluons at LO) and a diversification of experimental processes will be very beneficial.
- An extension of the kinematic domain is required to properly extract d_1 from the other terms in the expansion. This requires future experiments at EIC or EIcC. More precise data from JLab and CERN will also improve the picture.

