
Existing exclusive UPC measurements

1

a c d

e f g

b

h
Pb

Pb

Pb

c

c̄

Pb

k1

k2

Pb

Pb

Pb

µ+

µ�

Pb

k1

k2

Pb

Pb

Pb

µ+

�

µ�

Pb

Pb

Pb

Pb

�

�

Pb

Pb

Pb

Pb� + X

Pb

Pb

Pb

Pb�+X

jet/Q̄

jet/Q

Pb

Pb

Pb

Pb

c

c̄

Pb�

Pb

Pb

Pb�

�

�

Pb�
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photonuclear interaction with neutron breakup of the target, (b) incoherent photoproduc-

tion, generic to heavy quarks and jets, (c) exclusive photoproduction of a vector meson

(d) coherent photoproduction of a vector meson, accompanied by nuclear excitation, (e)

dilepton production �� ! l
+
l
� (f) dilepton production �� ! l

+
l
� + �, including higher

order final-state radiation (g) light-by-light scattering, with no nuclear breakup (h) central

exclusive diphoton production, with double breakup.
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+
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� colliders. Table 1 gives the maximum energies for di↵erent ion species at

these machines. Nuclear beams provide several distinct advantages

1. a large e↵ective photon luminosity boost proportional to Z
2 for each nucleus, com-

pensating for the overall lower luminosity of nuclear beams

2. reduced virtuality

3. the possibility of multi-photon exchange between a single ion pair, allowing for tagging

of di↵erent impact parameter distributions and photon spectra.

Early UPC studies largely focused on e
+
e
� pair production and low-energy nuclear

physics (1). In the late 1980’s, interest grew in using UPCs to probe fundamental physics,

most notably two-photon production of the Higgs (9, 10). Although the resulting �� lu-

minosities were not encouraging for observing the Higgs, they did stimulate work on ��

production of other particles. The first calculations of coherent photoproduction with gold

beams at RHIC predicted high rates of vector meson photoproduction (11), which were

quickly confirmed by the STAR Collaboration (12). The combination of large cross-sections

and available experimental data stimulated further interest. With the advent of the LHC,

the energy reach for UPCs extended dramatically, and the field has blossomed.

A key to development of UPC as a precision laboratory for electromagnetic and strong

interaction processes is the development of event generators that simulate both the ini-

tial photon flux and the relevant physics processes. The most widely-used generator code

is STARLight (13) which has been available since the early days of the RHIC program.

It implements one and two photon processes, and includes a set of final states including

vector mesons, meson pairs, and dileptons, with more general photonuclear processes ac-
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Inclusive dijets in photoproduction on Pb
• Access to nuclear PDFs at low xB, through photon-gluon fusion


⟶ constrain nuclear PDFs, where uncertainties are large


⟶ access region of nuclear shadowing


R368 Topical Review
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Figure 1. Diagram of leptoproduction on a nucleus through virtual photon exchange.
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Figure 2. Schematic behaviour of RA
F2

(x, Q2) as a function of x for a given fixed Q2.

data exist):

l(k) + A(Ap) −→ l(k′) + X(Ap′),

q = k − k′, W 2 = (q + p)2, x = −q2

2p · q
= −q2

W 2 − q2 − m2
nucleon

,
(2)

see figure 1. The variable x has the meaning of the momentum fraction of the nucleon in the
nucleus carried by the parton with which the photon has interacted. Q2 = −q2 > 0 represents
the squared inverse resolution of the photon as a probe of the nuclear content. And W 2

is the centre-of-mass-system energy of the virtual photon–nucleon collision (lepton masses
have been neglected and mnucleon is the nucleon mass), see e.g. [3] for full explanations.
The nucleon structure function is usually defined through measurements on deuterium,
F nucleon

2 = F deuterium
2

/
2, assuming nuclear effects in deuterium to be negligible.

The behaviour of RA
F2

(x,Q2) as a function of x for a given fixed Q2 is shown schematically
in figure 2. It can be divided into four regions2:

• RA
F2

> 1 for x ! 0.8: the Fermi motion region.

• RA
F2

< 1 for 0.25–0.3 " x " 0.8: the EMC region (EMC stands for European Muon
Collaboration).

• RA
F2

> 1 for 0.1 " x " 0.25–0.3: the antishadowing region.

• RA
F2

< 1 for x " 0.1: the shadowing region.

2 Note that the deviation of the nuclear F2-ratios from one in all four regions of x is sometimes referred to as the
EMC effect. I use this notation only for the depletion observed for 0.25–0.3 ! x ! 0.8.
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The obvious question is whether the additional freedom
to decouple the Ruv and Rdv nuclear corrections yields a
substantial improvement in the fit. To shed more light on
this issue, we have generated a modified fit where we have
forced the uv and dv nuclear corrections to be similar to the
EPS09 PDF set.20 We find that the χ2=dof for this modified
fit is comparable (Δχ2 ≲ 5) to our original nCTEQ15 at a
level well below our tolerance criteria of Δχ2 ¼ 35.
Therefore, we conclude that the current data sets are not

sufficiently sensitive to distinguish the uv and dv nuclear
corrections to a good degree. Hence, the advantage of
independent Ruv and Rdv correction factors is currently
limited, which, however, will change with more data (e.g.,
from the LHC).21

To better understand this result, we observe in Figs. 22
and 23 that the uv and dv ratios exhibit opposite x depen-
dence as compared with the fHKN07;EPS09;DSSZg sets.

FIG. 24. (upper panel) Comparison of the full nuclear lead distributions, fPb ¼ 82
207 f

p=Pb þ 207−82
207 fn=Pb, for nCTEQ15 (blue), EPS09

(green), and HKN07 (red) atQ ¼ 10 GeV. The lower panel shows the same distributions compared to the lead PDF, fPb, constructed of
free-proton distributions. The wide spread of the ratios at large x is an unphysical artifact due to the vanishing of the PDFs in this region.

20As we are fitting directly the nuclear PDFs fp=Aðx;QÞ and
not the ratios fp=Aðx;QÞ=fpðx;QÞ, it is nontrivial to force the
nuclear corrections to be exactly the same if the underlying
proton PDFs differ. We are able to find an approximate solution
by equating the uv and dv coefficients ci;j for fijg ¼
f11; 12; 21; 22; 31; 32; 51; 52g and refitting the PDFs.

21In an earlier study, we did find an apparent difference due to
independent Ruv and Rdv nuclear corrections. The present updated
analysis additionally includes (i) an improved treatment of the
fA; Zg isoscalar corrections and (ii) QED radiative corrections for
DIS data sets, (iii) use of full theory (instead of K-factors) to obtain
the final minimum, and (iv) improved numerical precision for the
DY process. With these improvements, the χ2 of the modified fit is
now comparable to nCTEQ15.
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level well below our tolerance criteria of Δχ2 ¼ 35.
Therefore, we conclude that the current data sets are not

sufficiently sensitive to distinguish the uv and dv nuclear
corrections to a good degree. Hence, the advantage of
independent Ruv and Rdv correction factors is currently
limited, which, however, will change with more data (e.g.,
from the LHC).21

To better understand this result, we observe in Figs. 22
and 23 that the uv and dv ratios exhibit opposite x depen-
dence as compared with the fHKN07;EPS09;DSSZg sets.

FIG. 24. (upper panel) Comparison of the full nuclear lead distributions, fPb ¼ 82
207 f

p=Pb þ 207−82
207 fn=Pb, for nCTEQ15 (blue), EPS09

(green), and HKN07 (red) atQ ¼ 10 GeV. The lower panel shows the same distributions compared to the lead PDF, fPb, constructed of
free-proton distributions. The wide spread of the ratios at large x is an unphysical artifact due to the vanishing of the PDFs in this region.

20As we are fitting directly the nuclear PDFs fp=Aðx;QÞ and
not the ratios fp=Aðx;QÞ=fpðx;QÞ, it is nontrivial to force the
nuclear corrections to be exactly the same if the underlying
proton PDFs differ. We are able to find an approximate solution
by equating the uv and dv coefficients ci;j for fijg ¼
f11; 12; 21; 22; 31; 32; 51; 52g and refitting the PDFs.

21In an earlier study, we did find an apparent difference due to
independent Ruv and Rdv nuclear corrections. The present updated
analysis additionally includes (i) an improved treatment of the
fA; Zg isoscalar corrections and (ii) QED radiative corrections for
DIS data sets, (iii) use of full theory (instead of K-factors) to obtain
the final minimum, and (iv) improved numerical precision for the
DY process. With these improvements, the χ2 of the modified fit is
now comparable to nCTEQ15.

nCTEQ15: GLOBAL ANALYSIS OF NUCLEAR PARTON … PHYSICAL REVIEW D 93, 085037 (2016)

085037-27
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Inclusive dijets in photoproduction on Pb
• Access to nuclear PDFs at low xB, through photon-gluon fusion


⟶ constrain nuclear PDFs, where uncertainties are large


⟶ access region of nuclear shadowing
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• PbPb at                              ; ℒ=0.38 nb-1

ATLAS measurement

• at least 2 jets

• pT,leading jet > 20 GeV; pT,subleading jet > 15 GeV

• |ηjet|<4.4

• HT>40 GeV; MJ>35 GeV

• # neutrons in ZDCs: 0nXn 

• ∑Δη>2 in 0n (photon) direction; ∑Δη<3 in Xn (break-up) direction, with Δη>0.5.
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• PbPb at                              ; ℒ=0.38 nb-1

ATLAS measurement

• at least 2 jets

• pT,leading jet > 20 GeV; pT,subleading jet > 15 GeV

• |ηjet|<4.4

• HT>40 GeV; MJ>35 GeV

• # neutrons in ZDCs: 0nXn 

• ∑Δη>2 in 0n (photon) direction; ∑Δη<3 in Xn (break-up) direction, with Δη>0.5.

3

<latexit sha1_base64="7ZAFW5ShYQzTRPInHb537BMKMvk=">AAACB3icbVDJSgNBEO2JW4xb1KMgjUHwFGaCohch6MVTiJANkhB6OpWkSc9id40Yhrl58Ve8eFDEq7/gzb+xsxw08UHB470qquq5oRQabfvbSi0tr6yupdczG5tb2zvZ3b2aDiLFocoDGaiGyzRI4UMVBUpohAqY50qou8PrsV+/B6VF4FdwFELbY31f9ARnaKRO9rCl7xTGuhOXSklyeZa3C7SF8IAxrUAt6WRzdt6egC4SZ0ZyZIZyJ/vV6gY88sBHLpnWTccOsR0zhYJLSDKtSEPI+JD1oWmozzzQ7XjyR0KPjdKlvUCZ8pFO1N8TMfO0Hnmu6fQYDvS8Nxb/85oR9i7asfDDCMHn00W9SFIM6DgU2hUKOMqRIYwrYW6lfMAU42iiy5gQnPmXF0mtkHdMfLenueLVLI40OSBH5IQ45JwUyQ0pkyrh5JE8k1fyZj1ZL9a79TFtTVmzmX3yB9bnDxKLmMk=</latexit>p
sNN = 5.02 TeV

<latexit sha1_base64="H4xZs5/pPOsFAbliWTLzeQqkFek=">AAACCHicbZC7SgNBFIZn4y3G26qlhYNBsJCwK4o2QtAmZYTcIAnL7OQkGTN7YeasGJaUNr6KjYUitj6CnW/j5FJo9IeBj/+cw5nz+7EUGh3ny8osLC4tr2RXc2vrG5tb9vZOTUeJ4lDlkYxUw2capAihigIlNGIFLPAl1P3B9bhevwOlRRRWcBhDO2C9UHQFZ2gsz94veZXLlk4CL20h3GN6Czga0dhLK8dj9Oy8U3Amon/BnUGezFT27M9WJ+JJACFyybRuuk6M7ZQpFFzCKNdKNMSMD1gPmgZDFoBup5NDRvTQOB3ajZR5IdKJ+3MiZYHWw8A3nQHDvp6vjc3/as0EuxftVIRxghDy6aJuIilGdJwK7QgFHOXQAONKmL9S3meKcTTZ5UwI7vzJf6F2UnDPCs7Nab54NYsjS/bIATkiLjknRVIiZVIlnDyQJ/JCXq1H69l6s96nrRlrNrNLfsn6+AZSM5or</latexit>

HT =
X

jet

pT,jet

<latexit sha1_base64="dG5aXvSMNvdIwfcGvS7WYyCYfvU=">AAACU3icbVFJSwMxGM2Me92qHr0MFkEPlpmi6EUoiiCCoGCr0KlDJv2mjWYWk2+KZZz/KIIH/4gXD5ou4FI/CLy8hSQvfiK4Qtt+M8yJyanpmdm5wvzC4tJycWW1ruJUMqixWMTyxqcKBI+ghhwF3CQSaOgLuPbvj/v6dRek4nF0hb0EmiFtRzzgjKKmvOLduXd26KoHiZkrIMAtV6Whl7kIj5jdAeb5ife9cSVvd3D7trIzMD+Nmd0usCzJxyJPt5XcK5bssj0Yaxw4I1Aio7nwii9uK2ZpCBEyQZVqOHaCzYxK5ExAXnBTBQll97QNDQ0jGoJqZoNOcmtTMy0riKVeEVoD9mcio6FSvdDXzpBiR/3V+uR/WiPF4KCZ8ShJESI2PChIhYWx1S/YanEJDEVPA8ok13e1WIdKylB/Q0GX4Px98jioV8rOXtm+3C1Vj0Z1zJJ1skG2iEP2SZWckgtSI4w8k3fyaRDj1fgwTXNyaDWNUWaN/Bpz8Qsxa7hF</latexit>

MJ =

vuuut

0

@
X

jet

Ejet

1

A
2

�

������

X

jet

~pjet

������

2

⟶ 2Q2➝2

γ

edge
ηΔ

0 1 2 3 4 5 6 7 8 9

η
Δ γ

Σ

0
1
2

3
4

5

6
7

8

9

3−10

2−10

1−10

1

 PreliminaryATLAS
-1Pb+Pb 2015, 0.38 nb

 = 5.02 TeV, 0nXnNNs

edge
γ

ηΔ dηΔ γΣ / dN2 devtN1/

ηΔ γΣ
0 1 2 3 4 5 6 7 8 9

η
Δ 

A
Σ

0
1
2

3
4

5

6
7

8

9

4−10

3−10

2−10

1−10

1 PreliminaryATLAS
-1Pb+Pb 2015, 0.38 nb

 = 5.02 TeV, 0nXnNNs

ηΔ AΣ dηΔ γΣ / dN2 devtN1/

Figure 3: Left: two-dimensional distribution of
P

� �⌘ vs �⌘edge
� for events selected by the UPC trigger having at

least two jets. Right: two-dimensional distribution of
P

A �⌘ versus
P

� �⌘.

ηΔ γΣ
0 1 2 3 4 5 6 7 8

trk
N

0

50

100

150

200

250

300

5−10

4−10

3−10

2−10

1−10 PreliminaryATLAS
-1Pb+Pb 2015, 0.38 nb

 = 5.02 TeV, 0nXnNNs

trkN dηΔ γΣ / dN2 devtN1/

trkN
0 50 100 150 200 250 300 350 400

trk
N

/d
N

 d
ev

t
N

1/

6−10

5−10

4−10

3−10

2−10

1−10

 > 2ηΔ γΣ
 < 1ηΔ γΣ

 PreliminaryATLAS
-1Pb+Pb 2015, 0.38 nb

 = 5.02 TeV, 0nXnNNs

Figure 4: Left: two-dimensional distribution of Ntrk vs
P

� �⌘ for events selected by the UPC trigger having at least
two jets. Right: distributions of charged particle multiplicity for events with

P
� �⌘ > 2 and

P
� �⌘ < 1.

particle track passing applied selections if at least one of the jets falls within the inner detector acceptance.
Events used in the analysis were required to have at least two jets satisfying the p

jet
T > 15 GeV and |⌘ | < 4.4

requirements. Furthermore, the leading jet is required to satisfy pTlead > 20 GeV. The azimuthal angle
di�erence between the leading and sub-leading jets is required to be greater than 0.2 and the combined
mass of all reconstructed jets, mjets, is required to be greater than 35 GeV.

Figure 5 provides a summary of the jet kinematics in events passing the above-described selections. The
left panel on the top shows the pT distributions for leading, sub-leading and other jets in the event. The
spectra are similar to those observed in other hard-scattering processes though the leading and sub-leading
jet spectra at low pT are a�ected by the pT thresholds applied in the analysis. The panel on the right
of the figure shows the leading-sub-leading jet �� distribution for events having two, three, or and more
than three jets. The dijet events have a �� distribution that is sharply peaked at �� = ⇡ while the other
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• HT>40 GeV; MJ>35 GeV

• # neutrons in ZDCs: 0nXn 

• ∑Δη>2 in 0n (photon) direction; ∑Δη<3 in Xn (break-up) direction, with Δη>0.5.
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particle track passing applied selections if at least one of the jets falls within the inner detector acceptance.
Events used in the analysis were required to have at least two jets satisfying the p

jet
T > 15 GeV and |⌘ | < 4.4

requirements. Furthermore, the leading jet is required to satisfy pTlead > 20 GeV. The azimuthal angle
di�erence between the leading and sub-leading jets is required to be greater than 0.2 and the combined
mass of all reconstructed jets, mjets, is required to be greater than 35 GeV.

Figure 5 provides a summary of the jet kinematics in events passing the above-described selections. The
left panel on the top shows the pT distributions for leading, sub-leading and other jets in the event. The
spectra are similar to those observed in other hard-scattering processes though the leading and sub-leading
jet spectra at low pT are a�ected by the pT thresholds applied in the analysis. The panel on the right
of the figure shows the leading-sub-leading jet �� distribution for events having two, three, or and more
than three jets. The dijet events have a �� distribution that is sharply peaked at �� = ⇡ while the other
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• STARlight: photon flux

• PYTHIA: 𝛄*+p

• CTEQ6L1 proton PDF

• SaS 1D photon PDFs

• no nuclear modifications

• General good agreement 

of data and MC


• Proof of principle  that

photoproduction of jets

can be studied in UPCs 

at LHC!
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• Forward region – γp selection: 

• 0 neutrons in ZDC of Pb-going side

• >10 GeV in hadron forward calorimeter in p-going side


• Large rapidity gap on Pb-going side

• pPb at                              ; ℒ=68.8 nb-1
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sNN = 8.2 TeV

3. Event selection 3

energy from all PF candidates below the corresponding threshold. In addition, for the central
region |h| < 2.5 no high purity tracks with pT > 200 MeV/c are allowed. The forward rapidity
gap (DhF) variable is then defined as the difference from h = �5.0 to the lower edge of the first
non empty h bin.

From kinematic considerations it is expected that UPC gp events are much more asymmetric
in rapidity than minimum-bias pPb events. Such events are characterized by an intact lead
nucleus, particle production in the positive h region and a large DhF [52–54]. The first two
requirements are met by requiring no neutrons detected by the ZDC� on the Pb-going side,
and at least 10 GeV in the highest energy tower of HF+ in the p-going side. On the other hand
the minimum-bias selection requires the coincidence of at least one tower with energy above
3.0 GeV in both HF+, HF�. To be consistent with detector activity only in the forward p-going
side and the tracker acceptance, events with 5.0 < DhF < 7.5 were selected.

These selection criteria are similar to those used in a recent study of pPb collisions with forward
rapidity gaps [51]. In this study, it was found that less than 0.4% of minimum-bias events pass
such a selection. The rapidity gap spectra were compared to the EPOS-LHC, QGSJET II and
HIJING generators which have been tuned to a wide range of pp and pPb interactions. These
generators include pomeron-p ( IPp), and pomeron-Pb ( IPPb) interactions but do not include
photon-p or photon-Pb interactions. For events with rapidity gaps in the positive h region,
the EPOS-LHC generator [55] predicted a DhF spectrum that was reasonably consistent with the
data, suggesting that diffractive IPPb events dominate this sample. For events with rapidity
gaps on the negative side, the predictions of the EPOS-LHC, QGSJET II and HIJING generators
for the DhF spectra are between a factor of 4 and 10 below the data [55–57], suggesting that this
sample is dominated by gp rather than IPp, events.
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Figure 1: Ntrk spectra for gp and minimum-bias samples. The shaded bands indicate the three
Ntrk categories used in the analysis.

Figure 1 shows the distribution of per-event Ntrk (pT > 0.4 GeV/c, |h| < 2.4) for UPC and
minimum-bias samples. Opposite to the minimum-bias distribution, UPC sample is limited
to Ntrk values up to ⇠35. Table 1 indicates the hNtrkivalues for both distributions including

• Tracks: 0.3<pT< 3.0 GeV; |η|<2.4


track: pT>0.4 GeV<pT; |η|<2.4
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Figure 2: Two-dimensional (left) and one dimensional (right) correlation plots for gp enhanced
(top) and minimum-bias events (bottom) for 0.3 < p

trig
T , p

assoc
T < 3.0 GeV/c and 2 < Ntrk < 35.

For the two dimensional distributions the jet peak centered at Dh = Df = 0 has been truncated
to increase visibility. The rapidity gap requirement for the gp enhanced sample limits the |Dh|
range to |Dh| < 2.5. The one dimensional Df distributions are symmetrized by construction
around Df = 0 and Df = p, so all the data are contained in [0, p] and are averaged over
|Dh| > 2. The Fourier coefficients, VnD in the right column are fitted over the Df range [0, p].
Points outside this range are shown with blue color and are obtained by symmetrization of
those in [0, p].

4

the cases in which the Ntrk range is divided into 2  Ntrk < 5 and 5  Ntrk < 35 categories.
hNtrkivalue for UPC sample is ⇠2.9 and ⇠16.6 for minimum-bias sample.

Table 1: Mean of Ntrk for the gp enhanced and the minimum-bias data sets for the three classes
of Ntrk. The statistical uncertainties are negligible .

Sample Ntrk < 5 5  Ntrk < 10 10  Ntrk < 35 5  Ntrk < 35 Ntrk < 35
gp enhanced 2.56 5.81 11.29 6.00 2.92
minimum-bias 3.02 6.91 21.5 18.48 16.57

4 Analysis technique
To ensure high tracking efficiency, only tracks within |h| < 2.4 and with 0.3 < pT < 3.0 GeV/c

are used in the analysis. The ultra-peripheral and minimum-bias data sets are divided into
classes of reconstructed track multiplicity, Ntrk, which is taken as the number of tracks from
the primary vertex with |h| < 2.4 and pT > 0.4 GeV/c. The analysis techniques for two-particle
correlations are identical to those used in previous recent measurements [2, 4, 21], and are de-
scribed below. Due to the limited Ntrk range for the gp events, no low-multiplicity subtraction
technique is implemented [48].

For each multiplicity class, tracks tagged as “trigger particles” are those whose pT is within a
given range, known as p

trig
T . The number of trigger particles in the event is denoted by Ntrig.

Particle pairs are then formed by associating each trigger particle with the remaining charged
tracks within a specified pT = p

assoc
T interval (which can be either the same as or different from

the p
trig
T range). For this analysis identical ranges are used for p

trig
T and p

assoc
T . Two different pT

ranges are studied, 0.3  pT < 3.0 GeV/c and 1.0  pT < 3.0 GeV/c, identical to the ones used
in previous studies of the ridge [2] and observation of correlated azimuthal anisotropies [48] in
pPb collisions.

The two-dimensional correlation function is defined as

1
Ntrig

d2
N

pair

dDhdDf
= B(0, 0)

S(Dh, Df)
B(Dh, Df)

, (1)

where Dh and Df are the differences in h and f of the pair, Ntrig is the number of trigger parti-
cles and N

pair is the number of pairs. The same-event pair distribution, S(Dh, Df), represents
the yield of particle pairs from the same event. The mixed-event pair distribution B(Df, Dh) is
constructed by pairing the trigger particles in each event with the associated charged particles
from 100 different randomly selected events in the same 0.5 cm wide vertex range and from
the same track multiplicity class. The same-event and mixed-event pair distributions are first
calculated for each event, and then averaged over all the events within the track multiplicity
class. The mixed-event distribution is normalized by the sum of background events. The ratio
B(0, 0)/B(Dh, Df) accounts for pair acceptance effects, with B(0, 0) representing the mixed-
event associated yield for both particles of the pair going in the same direction and thus having
maximum pair acceptance.

The left hand side of Fig. 2 shows the two particle correlation functions for gp enhanced (top)
and minimum-bias events (bottom) within the multiplicity range 2 < Ntrk  35 as a function of
Dh and Df. For the gp plot the Dh range is limited to �2.5 < Dh < 2.5 by the DhF selection and
the acceptance of the tracker. Both distributions show a large jet peak centered at Dh = Df = 0,

• Ntrig=number of tracks with

  0.3<pT< 3.0 GeV

• S: particle pairs from same event

• B: particle pairs from mixed events

CMS PAS HIN-18-008 

Correlation function:

Correlation function
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Figure 3: Magnitude of measured VnD coefficients for gp enhanced events for different classes
of Ntrk and two different pT ranges. For both samples the limits on p

trig
T and p

assoc
T are the same.

Systematic uncertainties are shown by the shaded bars in the two panels. The shaded bands
show the Ntrk regions used for each of the samples. The gp enhanced points are placed at the
mean value of the corresponding Ntrk range.

5  Ntrk < 35 were chosen to produce roughly equal number of pairs for 1.0 < p
trig
T , p

assoc
T <

3.0. For the lower p
trig
T category there were sufficient pairs to allow the bin 5  Ntrk < 35 to

be divided into two smaller bins. Both data sets show a negative V1D, a positive V2D and a V3D
that is consistent with zero. The magnitudes of V1D tends to decrease with Ntrk for both pT
ranges, but given the uncertainties are consistent with no Ntrk dependence. The magnitude V2D

increases with Ntrk for 0.3 < p
trig
T < 3.0 GeV/c category and is consistent with no Ntrk depen-

dence for 1.0 < p
trig
T < 3.0 GeV/c with smaller magnitude than V1D. In general, the magnitude

of both V1D and V2D increases with pT.

Table 2: Measured VnD coefficients for gp enhanced events as a function of pT and Ntrk. For
both samples the limits on p

trig
T and p

assoc
T are the same. The statistical and systematic uncer-

tainties are added in quadrature.

pT range ( GeV/c) Ntrk < 5 5  Ntrk < 10 10  Ntrk < 35
V1D �0.086 ± 0.006 �0.075 ± 0.005 �0.074 ± 0.007

0.3 < p
trig
T < 3.0 GeV/c V2D 0.012 ± 0.004 0.015 ± 0.004 0.026 ± 0.006

V3D �0.002 ± 0.001 �0.002 ± 0.004 �0.010 ± 0.006
Ntrk < 5 5  Ntrk < 35

V1D �0.271 ± 0.021 �0.221 ± 0.017
1.0 < p

trig
T < 3.0 GeV/c V2D 0.077 ± 0.027 0.059 ± 0.017

V3D �0.015 ± 0.009 �0.007 ± 0.013

Figure 4 shows v2 as a function of Ntrk for both gp enhanced and minimum-bias data sets for
the two pT ranges. For both the gp enhanced and minimum-bias data sets, the v2 at a given Ntrk

increases with pT. For 0.3 < p
trig
T , p

assoc
T < 3.0 GeV/c the minimum-bias results are consistent

with previously published CMS results [48] and increases very slowly with track multiplicity
for this range of Ntrk. However for 1.0 < p

trig
T , p

assoc
T < 3.0 GeV/c the minimum-bias v2 falls

with Ntrk. For both pT ranges v2 is larger in the gp enhanced sample than in the minimum-bias
results at similar values of Ntrk.
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Figure 4: Single-particle azimuthal anisotropy v2 versus Ntrk for gp enhanced and minimum-
bias samples in two pT regions. Systematic uncertainties are shown by the shaded bars in
the two panels. The shaded bands show the Ntrk regions used for each of the samples. The
gp enhanced points are placed at the mean Ntrk of the 2 < Ntrk < 5, 5 < Ntrk  10 and
10 < Ntrk  35 samples.

This effect may be due to the effect of jet correlations within the gp enhanced sample. It should
also be noted that while the the gp enhanced and minimum-bias samples are compared at
the same multiplicity the event topology of the two samples is very different. By construction
the gp enhanced sample only has tracks in the forward region whereas for the minimum-bias
sample the tracks are concentrated near central rapidity. In models assuming the formation of
a hydrodynamically expanding medium, the v2 is sensitive to event by event fluctuations in
the initial geometrical distributions of partons within a nucleus [58–60]. It is possible that the
different event topologies of the gp and minimum-bias samples selects different sets of initial
state configurations even when the associated multiplicity is the same.

7 Summary
In summary, we have studied long-range single-particle azimuthal anisotropies in
ultraperipheral pPb collisions at

p
s

NN
= 8.16 TeV. A sample of gp events is selected by

requiring an asymmetric distribution of energy in the forward and backward calorimeters, a
large rapidity gap in the lead-going direction and no neutron emission from the lead nucleus.
Previous studies suggest that this sample is dominated by gp events with some contribution
from diffractive IPp events. The VnD Fourier coefficients of the azimuthal distributions are
measured via long-range (|Dh| > 2) two-particle correlations as a function of event
multiplicity and for two pT ranges. The V2D coefficient is positive while V1D is negative,
suggesting a strong effect of jet-like correlations. The single particle flow coefficient v2(pT)
increases with pT and is larger for gp-enhanced events than for minimum-bias collisions of
comparable multiplicity. These results extend the search for collectivity in small systems to gp
events.
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Two-particle angular correlations in γPb interactions at ATLAS

• PbPb at                              ; ℒ=1.73 nb-1
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ch . The vertical error bars and colored boxes represent the statistic and
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each interval. The measurements in photo-nuclear events (solid circles) are compared to those in pp collisions at
13 TeV (open circles) and p+Pb collisions at 5.02 TeV [10] (open triangles), also integrated over 0.5 < pT < 5.0 GeV.
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• # neutrons in ZDCs: 0nXn 

• ∑Δη>2.5 in 0n (photon) direction; ∑Δη<3 in Xn (break-up) direction.

ATLAS-CONF-2019-022
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Gap analysis

10

Gap analysis

• Require gap on photon side: Σγ Δη > 2 
• Reject large gaps on nuclear side: ΣA Δη < 3 4

The resulting clusters and the charged particle tracks are ordered in η and intervals between adjacent tracks or clusters with separation ∆η > 0.5 are recorded 
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ATLAS measurement: results
ATLAS-CONF-2017-011
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