Detector and Physics simulation

Wednesday 9 Dec 2020, 16:00 \rightarrow 17:35 Europe/Zurich

Luminosity measurement at muon collider

D. Lucchesi, L. Buonincontri, C. Giraldin

University and INFN, Padova (IT)

Luminosity Measurements: method 1

Precise determination of the integrated luminosity target uncertainty is of crucial importance for any physics cross section measurement. In a two beams collider

$$L = \frac{N_1 \cdot N_2 \cdot f \cdot n_b}{A_{eff}}$$

 $n_{\rm b}$: number of colliding bunches, f: revolution frequency in the collider \rightarrow known by the machine N₁, N₂: average number of particle per bunch, $A_{\rm eff}$: effective area of the luminous region \rightarrow to be measured

Dedicated detectors, luminometers, are used in combination to "van der Meer" scan method to determine N₁, N₂ and A_{eff}. For example ATLAS

Luminosity Measurements: method 2 at e^+e^-

Experiments like KLOE, Babar, Belle, BES and, recently, Belle2 and BESIII, measure the integrated luminosity by counting the number of events, N, of a process whose cross-section is theoretically known with high precision, σ_{th} exploiting: $N=L\cdot\sigma_{th}$

The mostly used process: Bhabha scattering, $e^+e^- \rightarrow e^+e^-$ mainly in the forward region.

ILC and CLIC have dedicated detector in the forward regions to reconstruct e^+e^- pairs

Source of uncertainty	DL/L (500 GeV)	D <i>L</i> / <i>L</i> (1 TeV)	
Bhabha cross-section S_B	$5.4 \cdot 10^{-4}$	$5.4 \cdot 10^{-4}$	
Polar angle resolution S _q	1.6.10-4	$1.6 \cdot 10^{-4}$	
Bias of polar angle Dq	$1.6 \cdot 10^{-4}$	$1.6 \cdot 10^{-4}$	
IP lateral position uncertainty	$1 \cdot 10^{-4}$	$1 \cdot 10^{-4}$	
Energy resolution a_{res}	$1.0 \cdot 10^{-4}$	$1.0 \cdot 10^{-4}$	
Energy scale	$1.0 \cdot 10^{-3}$	$1.0 \cdot 10^{-3}$	
Beam polarization	$1.9 \cdot 10^{-4}$	$1.9 \cdot 10^{-4}$	
Physics background B/S	$2.2 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$	
Beamstrahlung + ISR ¹	$-1.1 \cdot 10^{-3}$	$-0.7 \cdot 10^{-3}$	
Beamstrahlung + ISR ²	0.4.10-3	$0.7 \cdot 10^{-3}$	
EMD^1	$-2.4 \cdot 10^{-3}$	$-1.1 \cdot 10^{-3}$	
EMD ²	$0.5 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$	
$(DL/L)^1$	$4.3 \cdot 10^{-3}$	$2.3 \cdot 10^{-3}$	
$(DL/L)^2$	$2.6 \cdot 10^{-3}$	1.6.10-3	

Physics background and beamstrhlung are among the dominant sources of systematic errors

Muon Collider: Beam-Induced Background

At muon collider the two mentioned methods can not be used because of the detector configuration.

Detector performance at a Muon Collider could be strongly limited by the rate of background particles arriving at each subdetector due to muon decays.

Nozzles have been designed to mitigate the effect of a such background.

Luminosity measurement at Muon Collider

Proposal: reconstruct $\mu^+ \mu^- \rightarrow \mu^+ \mu^-$ events at large angle with respect to the beam line to obtain $L = \frac{N}{\sigma_{th}}$

Questions:

- 1. do we have enough μ -Bhabha events at large angle?
- 2. Is the precision of the theoretical cross section enough to measure L?

Plan:

- a. Produce a sample of events $\mu^+ \mu^- \rightarrow \mu^+ \mu^-$ at $\sqrt{s=1.5}$ TeV, $\sqrt{s=3.0}$ TeV and $\sqrt{s=10}$ TeV by using a tree-level Monte Carlo generator and study the reconstruction efficiency at large angle by using the full detector simulation and identify additional kinematical requirements that can help to obtain a more precise theoretical prediction.
- b. Perform the same studies with Mu-BabaYaga event generator.
- c. Evaluate the theoretical precision on the Bhabha cross section.
- d. Determine the expected precision on the luminosity.

Status of the activities: preparation of the dataset

A sample of $\mu^+ \mu^- \rightarrow \mu^+ \mu^-$ at $\sqrt{s}=1.5$ TeV has been produced with Pythia and analyzed at Monte Carlo level to understand how many events we have in the "central" region.

Subprocess	Code	Number of events			sigma +- delta	
	į	Tried	Selected	Accepted	(estimat	ed) (mb)
				I		
f fbar -> gamma gamma	204	6331	2788	0	0.000e+00	0.000e+00
f f' -> f f' (t-channel gamma*/Z0)	211	1531041922	885384204	99669	3.085e-08	9.771e-11
f 1 f 2 -> f 3 f 4 (t-channel W+-)	212	1385941	169276	0	0.000e+00	0.000e+00
f fbar -> gamma*/Z0	221	1704	1623	158	4.925e-11	3.723e-12
f fbar -> gamma*/Z0 gamma*/Z0	231	7548	358	22	7.268e-12	1.512e-12
f fbar -> W+ W-	233	46301	5162	28	8.702e-12	1.641e-12
f fbar -> gamma*/Z0 gamma	243	24073	2768	88	2.783e-11	2.930e-12
f fbar -> H (SM)	901	Θ	0	0	0.000e+00	0.000e+00
f fbar -> H0 Z0 (SM)	904	99	26	3	6.897e-13	3.837e-13
f f' -> H0 f f'(Z0 Z0 fusion) (SM)	906	331	113	27	7.090e-12	1.237e-12
f_1 f_2 -> H0 f_3 f_4 (W+ W- fusion) (SM)	907	2697	977	5	1.599e-12	7.138e-13
	I					
sum	I	1532516947	885567295	100000	3.095e-08	9.786e-11

Status of the activities: first look at data

Accepting all muons in the detector acceptance with P_t >130 GeV

Status of the activities: first look at data

Analysis on the muons's pairs in the detector acceptance with $P_t > 130 \text{ GeV}$

Invariant mass of the muons

Assuming a Snowmass year = 10^7 seconds $\mathcal{L}=1.25 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$ Total events: 2.3 M

Status of the activities: Identify "safe" detector regions

In order to avoid the crowded regions affected by beam-induced background muons $30^{\circ} < \theta < 150^{\circ}$ are selected in addition to P_t >130 GeV

Status of the activities count useful events

Summary

- A method to measure the luminosity at Muon Collider is proposed based on μ -Bhabha at large angle.
- > By looking at the number of events produced by using Pythia it seems the number of events is enough to determine the luminosity with a reasonable precision (usually ~1%) at least at $\sqrt{s}=1.5$ TeV.
- > The next steps:
 - Re-do the exercise with the full detector simulation.
 - Perform the same analysis at $\sqrt{s} = 3.0$ TeV and $\sqrt{s} = 10$ TeV.
 - Use mu-BabaYaga to generate $\mu^+ \mu^- \rightarrow \mu^+ \mu^-$ samples and identify the best kinematic cuts to select Bhabha events.
 - Determine the theoretical precision on the cross section at the different center of mass energies.