
Framework for User Application
Software with GitLab and Docker

Maciej Wyżliński

1

Outline

● Introduction

● A generic Docker image with CentOS root file system and cross compiler

● Example usage for building ATLAS L1CT software
○ Host configuration

○ Building software

○ Deployment

2

Why use Continuous Integration (CI)?

● Automate manual tasks

● Identify breaking changes and bugs

● CI scripts are self-documenting

● Ensure build scripts compatibility with the newest

code versions

● It’s simple!

3

CentOS root file system and cross compiler

public https://gitlab.cern.ch/soc/centos-rootfs - starting from CentOS 7 image 4

https://gitlab.cern.ch/soc/centos-rootfs

CentOS root file system and cross compiler

● CentOS
○ Download and install qemu

○ Download and cross install a minimal CentOS 7

root file system using dnf

○ Install some additional packages (e.g. python3)

● Cross
○ Download and build cross compiler (gcc 8.3) from source

○ Install a cmake toolchain file for the selected architecture

Build CentOS Build cross

5

Docker images

Images to be downloaded from:

● gitlab-registry.cern.ch/soc/centos-rootfs/cross-aarch64
● gitlab-registry.cern.ch/soc/centos-rootfs/cross-armv7hl

They provide:

● A complete CentOS 7 root file system image with basic
packages installed

● A script to install or remove packages
● A cmake toolchain file for the chosen architecture
● Environmental variables (eg. CROSS_CC)

Docker images are ready to be used for user software building!
6

Specific application - as example ATLAS MUCTPI software

https://gitlab.cern.ch/atlas-l1ct/muctpi_ci 7

https://gitlab.cern.ch/atlas-l1ct/muctpi_ci

Goals

● Provide a unified way of installing the following on multiple hosts:
○ CentOS root file system

○ Cross compiler

○ TDAQ and L1CT executables and libraries

● Run nightly builds to check for breaking changes

● Run in an isolated environment (Docker container)

● Builds for both armv7 and aarch64

8

Specific application

9

Runners

● To create - run command

“gitlab-runner register”

● Two types of runners
○ Shell runner for building images

○ Docker runner for building software

● For the Docker runner -

 Add "/cvmfs:/cvmfs:ro,shared" to volumes

 list in /etc/gitlab-runner/config.toml

10

Describing a pipeline - example for L1CT job

● image - path to take docker image from

● stage - defines job order

● tags - defines the runner to choose

● script and before_script - actual commands

that are run

https://docs.gitlab.com/ee/ci/yaml/

11

https://docs.gitlab.com/ee/ci/yaml/

CentOS root file system configuration - specific
to ATLAS L1CT

12

Uploading the Docker image to registry

13

User Application Software

14

Passing artifacts between jobs

15

Deployment
● Install to selected hosts

● Rsync for installation

● SSH private/public key authentication
○ Key stored as variable in GitLab repository

● Separate deployment stages
○ When one component fails to install, others can succeed

○ Allow running partial pipelines (Skipping CentOS and cross compiler installation)

● Results - a full installation of:
○ CentOS root file system

○ Cross compiler

○ TDAQ and L1CT software executables and libraries

● muctpi_setup.sh script
○ Sets all the paths and environmental variables to allow running software on the target (SoC)

○ Prepares the development environment to recompile software locally on host (PC)
16

Pipeline triggers

● By default pipeline runs with every push

● We can set rules to control this behaviour:

● Pipeline can be triggered using HTTP API with variables:

17

Nightly builds

18

Summary

● Generic docker images (CentOS + gcc) to base user pipelines on

● Possibility to run builds for different architectures (armv7 and aarch64)

● A full installation on desired hosts, consisting of
○ CentOS root file system

○ Cross compiler

○ TDAQ and L1CT artifacts

● Script for setting up the development environment (PC), or deployment (SoC)

● Nightly builds and API triggers

19

Next steps

● Petalinux
○ PMU firmware

○ FSBL

○ U-Boot

○ Device-tree

○ Kernel

● Provide support to select newer gcc (gcc9?) versions

20

Questions?

21

