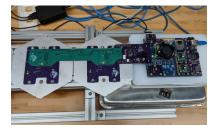

Trenz-based test systems in CMS HGCAL

SoC Interest Group Meeting

Arnaud Steen, on behalf of the HGCAL

February 16, 2021


CMS HGCAL for phase 2

Electromagnetic calorimeter (CE-E): Si, Cu/CuW/Pb absorbers, 28 layers, 25.5 X₀ & ~1.7 λ Hadronic calorimeter (CE-H): Si & scintillator, steel absorbers, 22 layers, ~9.5 λ

FE hardware to test in CMS HGCAL

- HGCAL needs test systems to test the quality of many individual components:
 - ▶ \approx 100k HGCROCs (the readout chip)
 - ▶ \approx 25k Si-Modules (and their hexaboard PCB) with 3 ot 6 HGCROCs
 - \blacktriangleright \approx 4k Tileboards
 - ► ECONs : ≈ 2 per module
 - Mother boards (engines and wagons)

HD Hexaboard

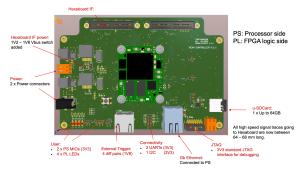
Tile board

Trenz-based test systems in CMS HGCAL

- Test systems based on Trenz module
 - ► Trenz module in HGCAL : TE0820

- Common architecture for single ROC, hexaboard and tileboard tester → same firmware IPs, same software
- Current test systems in HGCAL:
 - Single ROC tester (tested ≈ 200 ROCs → will test ≈ 300 more in few weeks)

- Current test systems in HGCAL:
 - Single Hexaboard test system (tested about 50 boards → 50 more in 2 months)

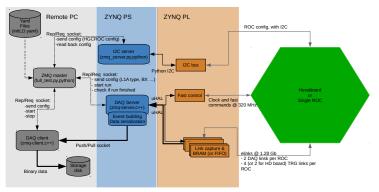

TB tester (during a beam test at FNAL)

Arnaud Steen, NTU

Our trenz based system

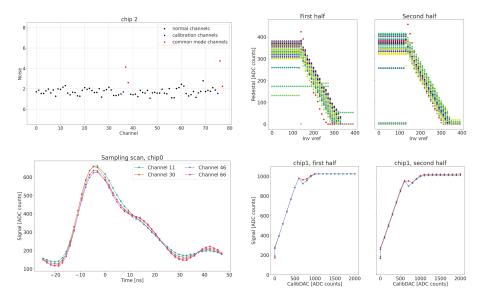
- TE0820 module in HGCAL tester:
 - Run a centos 7 image \rightarrow very convenient for SW development
 - Xilinx IPs:
 - ★ I2C for ROC configuration + ADC (ROC power consumption, DC levels) readout on the "trophy" board ★ GPIO
 - (CDMA testing)
 - ▶ Drivers: uio for all non-Xilinx IPs → AXI registers/FIFOs accessible in /dev/uioX
 - TE0820 has MAC address EEPROM. Value available to uboot and linux.
- The hexa-controller board:

Our trenz based system


• Firmware .bit and device tree files prepared by gitlab CI/CD for our three designs.

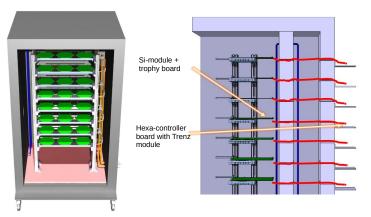
Pipeline Needs Jobs 6 Tests 0		
Check_prerequisite	Run_vivado	
⊘ list_projects	hexaboard-hd-t	
	singleroc-tester	
	Tileboard-tester	

- Vivado 2019.2 docker in dedicated runner
- Labels added to the device tree to map UIO devices, I2C buses, GPIO lines
- Firmware loaded using custom Makefile:
 - * creates .dtbo from .dtsi files
 - ★ loads the FW using the xilinx fpgautil tool : link
 - Link to mylittledt.
- Firmware can be reloaded without rebooting:
 - ★ when changing the DUT
 - ★ very convenient for debugging
- Plan to add the .dtbo creation inside our gitlab CI process


DAQ overview

- Using an extended uhal library to memory map the AXI registers and read the FIFOs : Dan Gastler's presentation. We added:
 - Interrupt signal handler
 - "Non-incremental" block read (to read FIFOs)
- Synchronization of the software by using zmq library https://zeromq.org/

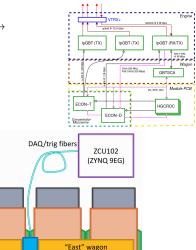
- No direct I2C for the tileboard:
 - A GBT-SCA is used to configured the ROCS
 - Interface between GBT-SCA and SW using the same "AXI-over-uio-over-uhal"


Test system output

Arnaud Steen, NTU

Future multi-module test system

• Si-modules will be tested inside a cold box (\approx -30 $^{\circ}C$) after assembly


"V2" test system

- \bullet HGCAL communication chain : ROCs \rightarrow ECONs \rightarrow IpGBTs \rightarrow BE
- "V2" test system : first system with full communication chain ("V2" ↔ 2nd version of the HGCROC):
 - ECONs not yet available (ECON-T design review was Feb 03)
 - ECONs emulated in the ZYNQ of hexa-controller boards

Hexacontroller Interposer

Hexaboard/module

"West" wagon

Engine

Summary

- CMS-HGCAL test systems started to use test board with Trenz module about 1 year ago
 - Trenz based test systems used for several plateforms (single ROC, hexaboards or Si-modules and tileboard/tilemodule).
 - All test systems use the same (or almost the same) firmware and software
- Test systems are now being distributed to Si-module and tile-module assembly centers (Germany, Taiwan, US).
- Knowledge on the Trenz is being useful for the "V2" test system:
 - Hexa-controller will be used as ECON chip emulators
 - FW and SW developped for the hexa-controller board and the tiler board testers will be recycled with the ZCU.
- Future multi-module tester plans to use the hexa-controller boards.
- Links to our gitlab repos (Access may need to be requested):
 - firmware repo.
 - software repo.

Back-Up