

Update on ZynqMP SoM for Serenity Boards

Luis Ardila, Oliver Sander (KIT)

luis.ardila@kit.edu, oliver.sander@kit.edu

Next revision ATCA hardware

Common objectives for this prototype iteration

- Support for large A2577 footprint
 - VU9P & VU13P
- Support for 10 Gb/s TCDS
- Support for Zynq & integrated IPMC
 - Retaining option for COM-Express / dimm based IPMC where it exists.
- Production style design
 - Simplified
 - Designed for test & mass manufacture

Serenity-A1.0

Serenity-Z1.2

https://indico.cern.ch/event/916720/contributions/3853811/attachments/2036 066/3409066/2020-05-10 TK DPS v4.pdf

Custom ZynqMP SoM - Why?

Technical requirements (Serenity specific)

- availability of high speed transceivers limited on commercial boards
 - ZU4EG with 16 lanes not available
- specific requirements (integration of IPMC into ZynqMP)
 - individual powering of the domains (LPD, FPD, PL)
 - IPMB circuitry
- compatibility with CMX form factor
 - flexible choice between x86 CMX boards and the ZynqMP SoM

Soft requirements

- full control of the design sources
- long term availability
- designed using KiCAD, an open source EDA software
- could evolve to a SoM (family) shared across multiple projects

Integrated ZynqMP SoM - Block Design

Integrated ZynqMP SoM - Layout

CMX-EXT module

Integrated IPMC functionality 12C IPMC I/O

USB PHY

IRPS5401 PMIC

QSPI FLASH

8 PL MGTs 2 PS MGT

CMX 6 PL MGTs 2 PS MGTs

FMC+ module

Integrated IPMC functionality I2C IPMC I/O

IRPS5401 PMIC

USB PHY

QSPI FLASH

FMC+ 5 PL MGTs 3 PS MGTs

Highlighted area is common between them

IRPS5401 PMIC

KSZ9031 ETH PHY

Si5395

2G DDR4

ZU4EG-B900

Money shots

ZyngMP FMC+ Power Plan

+3V3_STBY @ 2.68A (7.43W) (67% of 11W)

|-VDDO+VDDA_Si5395@ 0.433A LIRPS5401MTRPBF @ 2.25A (70% eff)

- -3) +2V5_STBY @ 0.060A LVPP_DDR4x2 @ 0.060A
- -3) +1V2_STBY @ 1.235A FVCCO_PSDDR_504 @ 0.354A VDD_DDR4x2 @ 0.660A LETH_PHY @ 0.221A
- -1) +0.85V_STBY @ 2.62A FVCCINT_IO @ 0.058A **|-VCCRAM @ 0.011A** VCC_PSINTFP @ 1.062A FVCC_PSINTLP @ 0.171A FVCC_PSINTFP_DDR @ 0.677A - PS_MGTRAVCC @ 0.641A
- -2) +1V8_STBY @ 0.690A -VCCAUX @ 0.117A **|**-VCCAUX_IO @ 0.041A VCC_PSAUX @ 0.002A -VCCO @ 0.053A
 - VCC_PSDDR_PLL @ 0.026A
 - VCC_PSADC @ 0.011A - VCCADC @ 0.008A

 - PS_MGTRAVTT @ 0.1A -VDD_Si5395 @ 0.270A

LVCC_QSPI @ 0.062A L2) +1V2_PS_PLL @ 0.026A LVCC_PS_PLL @ 0.026A 12V @ 2 A

IRPS5401MTRPBF

- -1) +0.85_PL_VCCINT LVCCINT @ 6A
- -4) +5V_USB_VBUS
- -3) +1V2_PL_MGTAVTT LMGTAVTT_R @ 1.892A
- -2) +0.9V_PL_MGTAVCC ^LMGTAVCC @ 1.339A
- L3) +1V8_PL_MGTVCCAUX LMGTAVCCAUX_R @ 0.049A

Measured power consumption:

Case1: 3V3_STBY ON, DC-DC unconfigured 3V3 STBY = 208mA

Case2: DC-DC configured $3V3_STBY = 743 \text{ mA} (2.45W)$ 12V = 72.8 mA

Case3: DC-DC configured Plugged-In $3V3_STBY = 743 \text{ mA} (2.45W)$ 48V = 127mA (6.1W)

13x21mm layout area

Current status

- Three Mezzanines fabricated
- Programmable power supplies configured successfully
- One board tested all the way down to "Hello-World" from R5 and from A53 using only STBY power 2.67 W
- Some minor bugs found, but DDR4 layout works!
- boot from SDcard and JTAG works.

Summary and Outlook

- first revision of the module with minor bugs but operational
- in the following days, all interfaces of the SoM need to be tested and validated
- after fixing PCB bugs both versions will be fabricated in same panel
- integrated OpenIPMC firmware + CentOS linux currently getting migrated from other ZyngMP based platform

In case you are interested in the design sources, please contact us.

ZynqMP FMC+ PL_VCCINT Power Rail

The PL_VCCINT 0.85V rail can be supplied from the 3.3V_Standby power by using the power switch TPS2290N (U23)

Quiescent current for PL_VCCINT is ~700mA for 4EG, 5EG and ~ 1200mA for 7EG, currently with 4EG total current in 0.85V is 2A (4A possible)

Heatsinks

