LHC Vacuum Supervisory application updates during LS2

sebastien.blanchard@cern.ch

Table of contents:

- Introduction
 - Vacuum controls architecture
 - What is the vacuum supervisory application?
- Safety first! or the access control policy
- Why or What does consist the LHC vacuum control application <u>update</u> in?
- Example of "flop"
 - First implementation of the new device type animations
- Example of "top"
 - Integration of the Run 3 layout
 - Integration of \sim 250 new PLCs and associated new device types for pumping groups and I/O gauges
 - Migration to Agilent Ion pump controller and the dynamic animations of ion pump interlock signals
 - Upgrade of the notification system

4 Introduction: Vacuum controls architecture

Introduction: Vacuum supervisory application

- What are all these acronyms you may have heard/read?:
 - PVSS: old product name from ETM gmbh
 - WinCC OA: new product name after SIEMENS bought ETM
 - <u>SCADA</u>: generic name
 - « Supervisory Control And Data Acquisition »
 - What is the vacuum SCADA application?:
 - Siemens commercial product with on top:
 - Dedicated managers and drivers developed by Siemens for CERN
 - Unicos Components
 - Vacuum Framework

Introduction: Vacuum Supervisory application

Control And Data Acquisition

It is more than a supervisory application: The swiss army knife for the vacuum control system.

Access Control: Safety first

In control systems, safety is first a matter of a hardware design, installation and procedures (connectors, cabling, controllers, PLC processes, lockout procedures...). This is out of the scope of this presentation.

We will mention another aspect of safety related to the supervisory application :

Access Control

Why you get the below message?

Access Control: Domain and Privilege Most boring slide

Access Control is managed using:

Domain: Classification to group devices that are operated by a dedicated group of users. Domain is related to a system (or sub-system), an area, a device type (or a group of device types) or a mix of previous.

Example:

- "BEAM" domain for the generic devices installed on Beam vacuum,
- "NEG" domain for NEG controller devices.

Privilege: Level of "accreditation" to operate a device, in the vacuum supervisory application there are 4 levels:

- monitor (access to diagnostic features, no action)
- operator (basic actions)
- expert (advanced actions)
- admin (critical actions)

Block off order is a Remote order disable, it blocks only any remote order from SCADA, it **does not guarantee the instrument is not powered** and it **does not avoid any local actions**

Updates: Why?

You may have received the below e-mail, what is behind this email?

To: Vacuum-Controls-Users-LHC (Users of the LHC Vacuum Control Systems) <<u>Vacuum-Controls-Users-LHC@cern.ch</u>> Subject: [LHC] Vacuum Controls update: MONDAY (3rd February 2020)

Dear Colleagues,

An update of the LHC Supervisory Application and its PLCs is scheduled on Monday, the 3rd of February 2020 at 9am.

LHC VACUUM CONTROLS UPDATE:

**

Purpose:

- INSULATION VACUUM - Octant 5-8: New controls for pumping groups, I/O gauges and Cryo Alarms,

- INSULATION VACUUM : New VPG Animations and menus
- INSULATION VACUUM : New Alarms for Cryo table panel
- BEAM VACUUM Arc45 Right, Arc78 Right: New controls for I/O gauges
- BEAM VACUUM LSS6-7-8: New Agilent VPI controlers and new Profibus interface for Sector Valves

Concerned Services :

Vacuum SCADA application LHC_3.15 PLCs Fixed pumping groups and by-pass valves

Services back :

SCADA Application @ 18h30 PLCs, Fixed pumping groups and by-pass valves @ 18h30

Best Regards,

Vacuum Controls team

Updates: Why and How?

4. Developments and deployment of new device types and functionalities

The Flop: First implementations of new device types

The issue:

First implementations of the remote control and animation for new pumping groups and I/O gauges in 2019 and early 2020 updates.

- Missing statuses and actions
- Wrong details panel implementation
- Incoherent device icon's animation in synoptic

• ••

Why?

- Change of the device control behaviour that makes the previous remote control and animation not possible to reuse.
- Different approach and requirements between Beam vacuum and Insulation vacuum
- No standard and no specifications

First implementation of new device types: <u>The solution</u> Restart from scratch :

- Specifications proposal
- Meetings
- · Official approval procedure
- New development and deployment

VPGER 484 15R1 M

The Top: The proof of the scalability

Unprecedent (since the LHC installation) success full growth of the LHC supervisory application:

- Increase of "application variable" (data point) number: 700k to 1.5M
- Increase of PLC number: 150 to 290
- . Integration of the remote control for **wireless mobiles**
- Integration of much **complex** (parametrization) **controllers**:
 - . I/O gauge controller (ad hoc)
 - . Ion pump controller (AgilentTM)
 - •••
- Integration of a much complex layout with the new Layout DB 2.0

4 The Top: New strategy for Pumping Group updates

Pumping groups have individual PLC controller. It is more than 200 PLCs that may require update during Technical Stops.

New Update Process

The Top: 40 new or updated sectors

The Top: Predefined Notifications

Unique Parameter:

									_
roup of (opfourations			Notifi	cations setup				
ID	Owner	Name	Group Type	Sectors/MainParts	Recipients	State	Stat	e Msg	•
00009	mbrusami	A4D9 Y	NCONCORDION			- meeve			_
00000	mbruseni		NFG	Activa	ation				-
00009	iwawara	Reint 7					tivatoro	moty list of againment	_
00010	wevers	TCID 1112					cuvate. e	mpty list of equipment	-
00011	vazquezp	TCLD. 1102	Sorti	$\operatorname{or} \operatorname{On}$	Work				-
00012	vazquezp	ISS7 - ID7 bake	JCCI		WUIK				-
00013	kowenc	14D 7							-
00015	chlancha	tast1	ка	n	S 3.67				-
00015	anana	C5 and R5L4	main	гаπ с	n work	(-
00010	kowene	A4P7 P (intern							-
00018	kowens	A4R7.R (intern							-
00010	vazquezo	A4R7 R baken	I HC.	Beam	i Opera	tion			-
00020	enane	D5 and E5R4		boan	opora	61-0-1-1			-
00020	vazquezo	BSR7 bakeou							-
00022	vazquezo	46L7 B	Г Ц С	Incute	ition On	went	ion		-
00022	vazquezp	A58.7.8	спс	msuia		त्तवा			-
00023	enage	ASI 7.R	NEG Activation	45L7.R	+41754110761@mail2sms.cern	Running All			
4	chode								•
New.	Del	lete Edit	Activate	Deactivate			Г	Show only my g	roups
ificatio. Runnir	n_Script:	Notification_Mode:	Current machir	ne mode is SHUTDO	WN		Address book	Help C	lose

The Top: Ion Pump control & Sector Valve Interlocks

- Sector valves are interlocked by Pennings and Ion Pumps.
- The **interlock** is represented by an "arrow" on the synoptic.
- For Ion Pumps the "arrow" is animated and dynamic.

With the full parametrizations of the interlock generated by the Ion Pump, it is possible to **change the source**.

In case of a pump **failure** an expert can remotely change the interlock source to a **valid** pump.

4 Summary

- The Vacuum Supervisory application is (one of) the **biggest** industrial control application at CERN
 - 1.5 Million Data Points
 - More than 290 PLC for fixed equipment
 - More than 250 PLC for mobile equipment
- Access control policy improved
- Standardization of animation
- Successful **layout** updates:
 - Significant changes in 40 sectors
- Successful new controllers' migration
 - Fixed pumping group
 - Wireless mobile pumping group
 - I/O Gauge
 - Ion pump controller (Agilent)
 - Sector Valves controller

• ...

- Successful deployment of **new and improved features**
 - Wireless pumping group integration
 - Sector Valve interlock animation
 - Notification system

• .

All these efforts to arrive soon at the below machine state !

