ALICE status

Paul Kuijer

- Data taking March June 2010
- Detector status and performance highlights
- Physics analyses

Detector configuration 2010

Partially installed:

- Transition Radiation Detector (TRD 7/18)
 - 2 supermodules ready at CERN
 - 1 arriving later this month
 - nominal supermodule construction time: 4 weeks
 - all chambers finished
 - read-out electronics production ongoing, yield > 97%
- EM Calorimeter (EMCAL 4/12)
 - Ready in August
- Photon Spectrometer (PHOS, 3/5)
- High Level Trigger (60%)

Need 10+ weeks to open the experiment

 \rightarrow Installation continues in 2012

LHCC open session, 7-7-2010, P. Kuijer, NIKHEF full hadron and muon capabilities partial electron and photon

Since 1/7: low μ running with displaced beams (high multiplicity physics) 3.8 σ separation $\rightarrow \sim 1/30$ bunch luminosity $\rightarrow \mu$: $\sim 1.7 \rightarrow 0.05$ next: increase number of bunches (to L $\sim 1-2 \ 10^{29} \ \text{cm}^{-2} \ \text{s}^{-1}$) Other parameters: bunch configuration, β^* , more studies needed

Data taking since March 30th

7 TeV: 300x10⁶ events,

0.9 TeV: ~10x10⁶ events

Amount of material measured with gamma conversions

Amount of material gamma conversions data-MC

TPC calibration

- Example: $D^0 \rightarrow K\pi$: pass1 vs pass2
 - better TPC calibration \rightarrow better mom. resolution
 - Mass resolution: $23 \rightarrow 16 \text{ MeV/c}^2$
 - S/B (p,>3 GeV/c): 0.3 → 0.6

Muon Spectrometer – Tracking systsem

Fully installed, data taking at 7 TeV ongoing...

Alignment:

•Significant improvement in the invariant mass resolution $\rightarrow \sigma_{J/\psi} = 80-90 \text{ MeV/c}^2$ (design 80 MeV)

•Trigger:

•Fine tuning of RPCs working conditions in avalanche mode

-- In the next technical stop fix LVPS problems on Ch. 5. (1/16 of detector)

J/Psi \rightarrow ee

TPC

Increasing beam current, increased number of TPC ROCs HV trips

- Using TPC events to investigate, test runs with nominal or low gain, ...
- Since a few days less trips even during beam instabilities
- At present we do not exclude any hypothesis concerning the cause

DCAL installation in 2012 (10+ weeks needed)

Proposed EMCAL extension: DCAL

- ALICE-TDR-014, 22 June 2010
- PHOS+extra EMCAL modules opposite to EMCAL
 - 60% extension of EMCAL acceptance
- Countries: China, France, Italy, Japan, USA
- Detailed project responsabilities
- Completion by February 2011

14

VI.1 Beam view of EMCal (above mid-plane) and DCal (below mid plane)

The Role of High P_T Correlation Measurements

Now understood as a GEOMETRIC BIAS: The High P_T trigger favors minimum in-medium path length on the trigger side and thus maximum LHCC open session, 7 in-medium path length on the away side.

2010, P. Kuijer, NIKHEF

Next generation measurement: controlled variation of jet path length trigger Jet 20 Calculation: qPYTHIA pi0 Et > 5GeV pi0 Et > 20GeVIn DCal E:"=90eV E:">100eV In EMCal Qhat=0 L2 GeV2/fm Trigger Reçoil let. E: siGev Et">20GeV R=7.1fm -x' x x Qhat=20 GeV2/fm PathLength for Backward Jet : nº-Jet PathLength for Trigger #":#"-Jet Qhat=50GeV²/fm : P^{*} >20GeV/e Qhat=50GeV²/fm : P^f>40GeV/c £ 25 Qhat=20GeV²/fm : P, >40GeV/c Et">SGeV Et">20GeV 9.25-Tet. Qhat= 0GeV²/Im : P,">40GeVic

Qhat=50 GeV2/fm

Physics analyses

- 6 papers published submitted
 - Charged-particle density in 900 GeV pp collisions
 - K. Aamodt et al. (ALICE), Eur. Phys. J C 65 (2010) 111
 - Charged-particle multiplicity in 0.9 and 2.36 pp collisions
 - arXiv:1004.3034[hep-ph] accepted by Eur. Phys. J C
 - Charged-particle multiplicity in 7 TeV pp collisions letter
 - arXiv:1004.3514[hep-ph] accepted by Eur. Phys. J C
 - Mid-rapidity antiproton/proton ratio in 0.9 and 2.26 TeV collisions letter
 - submitted to PRL
 - HBT correlations at 0.9 TeV
 - submitted to PRD
 - Transverse momentum spectra at 0.9 TeV
 - submitted to PLB
- Papers in draft
 - Identified charged hadron spectra and yields in pp at 0.9 TeV
 - Strange particle production in pp at 0.9 TeV

Ongoing analysis: event shape, underlying event, azimuthal correlations, pi0, eta, open charm: D0 D+ D*, J/psi

Baryon transport in pp

Baryon transport via the di-quark Fragmentation function of di-quark exponentially suppressed at large rapitity gap

String Junction

Baryon transport via di-quark, quark-J or Junction alone

→Different fragmentation functions
◆Veneziano:

*exponentially suppressed, intercept
model dependent $P(\Delta y) \sim e^{(a_y - 1)\Delta y}$

Kopeliovich:

Probability constant with rapidity

 $P(\Delta y) = const$

Large rapidity gap (9.6) at LHC \rightarrow Difference in tails can be measured

Baryon – antibaryon asymmetry in pp

LHCC 2010,

20

HBT (submitted to PRD)

One dimensional Gaussian HBT radius as function of the multiplicity. $0.1 \text{ GeV/c} < k_T < 0.55 \text{ GeV/c}$ $<k_T> = 0.32 \text{ GeV/c}$

Used PHOJET and PYTHIA to subtract the baseline correlations

Similarly to heavy ion collisions the radius increases with multiplicity

HBT

One dimensional Gaussian HBT radius as function of k_T . <dN/dŋ>=3.6

Used PHOJET and PYTHIA to subtract the baseline correlations

Tevatron data at much higher multiplicity but STAR multiplicity is comparable

Charged particle pT spectrum (INEL)

Submitted to PLB

Mod. Hagedorn fit (0-10 GeV/c):

$$\frac{1}{2\pi p_T} \frac{d^2 N_{\rm ch}}{d\eta dp_T} \propto \frac{p_T}{m_T} \left(1 + \frac{p_T}{p_{T,0}} \right)^{-b}$$

-> good description for small pT's
-> used for extrapolation to pT=0

<pT>_{INEL} = 0.483 +- 0.001 (stat) +- 0.007 (syst.) GeV/c <pT>_{NSD} = 0.489 +- 0.001 +- 0.007 GeV/c

Power low fit (3-10 GeV/c): $\frac{1}{2\pi p_T} \frac{d^2 N_{ch}}{d\eta dp_T} \propto p_T^{-n}$

-> good description for pT > 3 GeV/c

pT points at the bin centers.

Comparison to models

 PYTHIA Perugia0 and D6T tunes describe the shape best, but yield ~20% too low

• PHOJET (at 900 GeV) and PYTHIA ATLAS-CSC tune (at 2.36 and 7 TeV) gave best description of the multiplicity distributions.

•ALICE sees larger <p_> (and harder spectra)than other experiments with larger eta acceptance at 900 GeV

<pT> vs energy dependence

2010, P. Kuijer, NIKHEF

<pT> vs n_{acc}, <pT> vs n_{ch} (p1) (GeV/c) p_T) (GeV/c) 1.1 1.1 ALICE, pp, INEL ALICE, pp, INEL $\sqrt{s} = 900 \text{ GeV}, |\eta| < 0.8$ $\sqrt{s} = 900 \text{ GeV}, |\eta| < 0.8$ ----0.9 0.9 Fig.6 ▲ 0.5 < p_⊤ < 4 GeV/c ▲ 0.5 < p_T < 4 GeV/c 0.8 0.8 ■ 0.15 < p_T < 4 GeV/c 0.15 < p₁ < 4 GeV/c</p> 0 < p_T < 4 GeV/c (extrapolated)</p> 0 < p₁ < 4 GeV/c (extrapolated) 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 5 30 35 35 10 15 20 25 5 25 30 0 0 10 15 20 40 n_{ch} nacc

Comparison to models

Identified particle spectra

(in progress)

10⁻¹

- pt spectra of indentified pions, kaons and protons
 - TPC dE/dx measurement
 - TOF at higher pt
 - ITS dE/dx measurement at lower pt

LHCC open session, 7-7-2010, P. Kuijer, NIKHEF

momentum [GeV/c]

Azimuthal correlations

2010, P. Kuijer, NIKH

analysis

ongoing

Conclusions

⇒ 2010 running very successful

- o detector, online, and offline systems ready
- about 300 million MB events collected at 7 TeV
- ⇒ Phased installation of remaining detectors prepared
- ⇒ Alignment and calibration progressing well
 - Material budget checked with photon conversions
 - performance of track and vertex reconstruction, particle identification close to design values
 - remaining: PHOS and EMCal energy calibration
- ➡ TPC trips to be investigated
- ZDC shadowing by collimator to be solved
- ⇒ Physics analysis well underway

Just started on pp, more to come Eager for PbPb