Status Report of The CMS Experiment

Christos Leonidopoulos CERN-PH on behalf of the CMS Collaboration

102nd LHCC Meeting, CERN 7 July 2010

Reminder: we went from this...

3.8T Superconducting Solenoid

Lead tungstate E/M Calorimeter (ECAL)

Hermetic (|η|<5.2) Hadron Calorimeter (HCAL) [scintillators & brass]

All Silicon Tracker (Pixels and Microstrips)

Redundant Muon System (RPCs, Drift Tubes, Cathode Strip Chambers)

...to this

First 7 TeV collisions in CMS – 30 March 2010

...and this, just three months later

From data-taking to the plots

CMS is still in the commissioning phase

• Hard work, long hours

- Despite early phase and complexity of experiment
 - Unprecedented levels of readiness
 - Very encouraging first results
- But:

> Always problems seeking solutions

➢ Hardest part is ahead of us

Operations

Integrated luminosity

CMS: Integrated Luminosity 2010

- $\sim 3/4$ of data recorded arrived in last 10 days
- Working hard to integrate full datasets for ICHEP
- Most performance plots use only fraction of data

Subdetectors status

MUON- CSC	MUON- DT	MUON- RPC	HCAL BARREL	HCAL ENDCAP	HCAL FORWAR D	ECAL BARREL	ECAL END-CAP	PRE- SHOWER	STRIP TRACKE R	PIXEL TRACKE R	
98.5	99.8	98.8	99.9	100	99.9	99.3	98.9	99.8	98.1	98.2	

Alignment/calibration status, dead/masked channels mirrored in MC

"The Trigger does not determine which Physics Model is Right. Only which Physics Model is Left."

DAQ/Trigger

- L1/DAQ rate: 45 kHz, @<0.5 MB/evt
- High-Level Trigger: have successfully deployed online trigger menus spanning luminosities from 1E27 through 2E30
 - Very smooth running throughout (200-400 Hz)
- HLT CPU-performance: 49 ms/evt
 - Primary contributors: commissioning
 and early analysis triggers
 - Contingency: factor of 2
 - Constantly on watch list

Trigger Performance

- HLT muon efficiency wrt L1
- L1 objects matched to offline objects
- ~90% efficiency at the plateau

- Photon efficiency wrt offline "super clusters"
- For barrel & endcaps
- Nearly 100% efficient

Predicting trigger rates: MC vs. data

"Building trigger menus 101"

Predicting trigger rates: MC vs. data

Monte Carlo:

10⁻¹

- Only used as a cross-check at this point
- Some trigger paths have significant cosmic or noise distributions that are not modeled with "baseline" MC
- Still, impressive agreement overall

1

Using MC to cross-check 4.6E29 rates

10

Rate (Hz)

14

Predicting trigger rates: MC vs. data

Data:

- Most triggers exhibit fairly linear behavior vs. luminosity
- Extrapolation errors minimized by using most recent data to keep the rate non-linearities under control
- Rates of all main players are
 predicted within ~20%

Using 1.2E29 rates to predict 4.6E29 rates

Rate (Hz)

Calibration Trigger Streams

• Calibration triggers have access to full L1 rate, and they output small fraction of event

Feature unique to CMS HLTCalibration starts online!

Calibration Trigger Streams

• Calibration triggers have access to full L1 rate, and they output small fraction of event

LHC has delivered

CMS will analyze

Trigger has accepted

Analysis Activity

Bunning jobs 30 Days from 2010-06-01 to 2010-07-01 Winter Break

10-20k analysis jobs running on Tier-2s continuously every day of June

Íogcollect

nunsingle

minbias-pythia8

test

simulation

reprocessing

📕 cleanup

dcd_pt15-pythia8

storeresults

sw installation

Physics production

3+1 CMS papers since May

1) Measurement of the Underlying Event Activity in Proton-Proton Collisions at 0.9 TeV. By CMS Collaboration (Vardan Khachatryan *et al.*). Jun 2010. <u>Temporary entry</u> e-Print: arXiv:1006.2083 [hep-ex]

<u>References | LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX | Keywords</u> <u>Abstract and Postscript and PDF</u> from arXiv.org (mirrors: <u>au br cn de es fr il in it ip kr ru tw uk za aps lanl</u>) <u>Bookmarkable link to this information</u>

2) Measurement of the charge ratio of atmospheric muons with the CMS detector. By CMS Collaboration (V. Khachatryan et al.). May 2010. <u>Temporary entry</u>

e-Print: arXiv:1005.5332 [hep-ex]

<u>References</u> | <u>LaTeX(US)</u> | <u>LaTeX(EU)</u> | <u>Harvmac</u> | <u>BibTeX</u> | <u>Keywords</u> <u>Abstract</u> and <u>Postscript</u> and <u>PDF</u> from arXiv.org (mirrors: <u>au br cn de es fr il in it ip kr ru tw uk za aps lanl</u>) <u>Bookmarkable link to this information</u>

3) Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at sqrt(s) = 7 TeV. By CMS Collaboration (V. Khachatryan *et al.*) CSM-QCD-10-006, CERN-PH-EP-2010-009, FERMILAB-PUB-10-170-CMS, May 2010. 26pp. Long author list - awaiting processing. e-Print: arXiv:1005.3299 [hep-ex]

References | LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX | Keywords | Cited 3 times Abstract and Postscript and PDF from arXiv.org (mirrors: au br cn de es fr il in it jp kr ru tw uk za aps lanl) Fermilab Library Server (fulltext available) EXP CERN-LHC-CMS | Reaction Data (Durham) Bookmarkable link to this information

4) Measurement of Bose-Einstein correlations with first CMS data.

By CMS Collaboration (Vardan Khachatryan et al.) CMS-QCD-10-003, CERN-PH-EP-2010-010, FERMILAB-PUB-10-171-CMS, May 2010. 24pp. Long author list - awaiting processing. e-Print: arXiv:1005.3294 [hep-ex]

<u>References | LaTeX(US) | LaTeX(EU) | Harvmac | BibTeX | Keywords | Cited 1 time</u> <u>Abstract</u> and <u>Postscript</u> and <u>PDF</u> from arXiv.org (mirrors: <u>au br cn de es fr il in it jp kr ru tw uk za aps lanl</u>) <u>Fermilab Library Server (fulltext available)</u> <u>Bookmarkable link to this information</u>

CMS paper at 7TeV

"Transverse Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at $\sqrt{s}=7$ TeV", submitted to PRL

Rise of the particle density at (2.36) 7 TeV steeper than in models
Careful tuning effort of the MC generators is ongoing

CMS paper at 7TeV

"Transverse Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at $\sqrt{s}=7$ TeV", submitted to PRL

Last night at ~midnight:

Rise of the particle density at (2.36) 7 TeV steeper than in models
Careful tuning effort of the MC generators is ongoing

Detector & Physics Performance

Detector & Physics Performance

 $\sigma = 6.1 \pm 0.1$ %

 $S/B_{+2\sigma} = 0.34$

 $P_{\rm T}(\gamma) > 0.5 {\rm ~GeV},$ $P_{T}(pair) > 2.5 \text{ GeV}$

- Vairs / 0.010 GeV 3000 3000 L Photon 1 2500 DATA 4000 0.43 nb⁻¹ 25.5k n 2000 0.4 0.5 0.6 0.7 0.8 0.9 • Statistics refer to $< 0.5 \text{ nb}^{-1}$ 0.4 Invariant Mass of Photon Pairs [GeV] Invariant Mass of Photon Pairs [GeV]
- Very useful tool to intercalibrate the crystals
- Good agreement in width and Signal/Background ratio
- Masses agree with expectations to within 1%

 σ = 6.4 ± 0.2 %

 $S/B_{+2\sigma} = 0.23$

M

0.7

0.8

0.5

0.6

Calorimetry: Missing E_T

Calorimetric MET (GeV)

- Jets reconstructed with the anti- $k_T R=0.5$ algorithm
- Dijet selection : Jet $P_T > 25$ GeV, $\Delta \phi > 2.1$, $|\eta| < 3$
- Loose ID cuts on number of components and neutral/charged energy fraction

Detector & Physics Performance

Muon

Calorimetric di-jet events

Detector & Physics Performance

Tracking distributions

Muon distributions

"Global Muons": matched tracks from Muon system and Tracker

- η and p_T distributions dominated by light hadron decay muons (red)
- good agreement with MC prediction, including
 - \circ heavy flavor decays (blue)
 - \circ punch-through (black)
 - o fakes (green)

Tracking distributions

Tracker Material Budget

Distribution of nuclear interactions in the tracker as a function of radial length

Tomography

Detector & Physics Performance

b-tagging 3D IP significance

3D impact parameter value and significance

all tracks with $p_T > 1$ GeV belonging to jets with $p_T > 40$ GeV and $|\eta| < 1.5$ - PFlow Jets anti- $k_T R=0.5$)

Excellent alignment and general tracking performance interaction primary vertex

track

"sign"

jet axis

b-tagging example

$M(\mu\mu K) = 5.268 \text{ GeV}/c^2$

 $M(\mu\mu) = 3.135 \text{ GeV}/c^2$

CMS experiment at LHC, CERN Run 136100 / Event 256858438 2010-25-5 03:43:48 CEDT $B^- \rightarrow J/\psi K^-$ candidate

All other tracks: $p_T > 1.0 \text{ GeV/c}$

Detector & Physics Performance

Ongoing studies:

- Momentum scale corrections by studying mass as a function of η , p_T (material budget)
- Efficiency studies with tag-n-probe
- Flight distance with determination of prompt and $b \rightarrow J/\psi + X$ terms 41

Selection of central (barrel), high-quality dimuons: • Resolution: 43.1 MeV → 21.0 MeV

$J/\psi \rightarrow \mu^+\mu^-$ and friends

$J/\psi \rightarrow \mu^+\mu^-$ and friends

Not enough statistics to disentangle all resonances (yet)

W $\rightarrow \mu \nu$ observation

$Z \rightarrow \mu^+ \mu^-$ observation

Detector & Physics Performance

- Higher background, tighter selection compared to muon channel
- Challenging analysis, Particle-Flow selection crucial
- Very promising preliminary results, signal clearly established

W \rightarrow e v observation

Two event selections:

- Basic electron ID, no MET cuts
- > More advanced electron ID, cuts on E_T , MET, ΣE_T

$Z \rightarrow e^+e^-$ observation

Summary

7 TeV collisions: a very exciting run!

- The CMS detector is working according to design
 - First performance results are very encouraging
 - Its behavior can be reproduced in Monte Carlo simulation
 - Our level of understanding for this early commissioning phase is very advanced
- The "rediscovery" of the SM has begun
- We are setting the grounds for challenging it as early as the end of 2010

Epilogue

• The technology of the LHC accelerator and experiments is unprecedented

- Massive amount of work and preparation invested in building and commissioning hardware & software
- But: we do not forget that the real challenges are still ahead (for all of us)

• We should consider this truly exciting period as the beginning of a marathon

The Beginning of The Journey

Credit for "Da Vinci" drawings: Sergio Cittolin Credit for material used in this talk: LHC, CMS

Backup

The CMS Detector

CALORIMETERS

Superconducting Coil, 4 Tesla

ECALHCAL76k scintillatingPlastic scintillator/brassPbWO4 crystalssandwich

Steel YOKE

Total weight : 12500 t Overall diameter : 15 m Overall length : 21.6 m Magnetic field : 4 Tesla

TRACKER

Pixels Silicon Microstrips

210 m² of silicon sensors 9.6M (Strip) & 66M (Pixel) channe/s

MUON BARREL

Drift Tube Resistive Plate Chambers (DT) Chambers (RPC) MUON ENDCAPS Cathode Strip Chambers (CSC) Resistive Plate Chambers (RPC) Muon p_T resolution with cosmics 1B events of (mostly muon) cosmic events collected make muons the best understood reconstructed object in CMS

$$R(q/p_{\rm T}) = \frac{(q/p_{\rm T})^{\rm upper} - (q/p_{\rm T})^{\rm lower}}{\sqrt{2}(q/p_{\rm T})^{\rm lower}}$$

Compare muon p_T in upper, lower detector halves to evaluate resolution

π^0 s and ECAL calibration

HLT: CPU performance & pile-up

• First look at impact of pileup on CPU-performance

• Have deployed "multiple-vertex" trigger to facilitate pile-up studies with real data

$J/\psi \longrightarrow \mu^+ \mu^-$

- Run range: 132440-139370
- Common selection:
 - > No scraping
 - Tracker Muons of opposite charge
 - \succ Pixel layers ≥ 2
 - \succ Tracker hits >= 12
 - \succ Tracker chi2 < 3
 - ≻ Mu pT > 2.5
 - \succ Mu segments >=2
 - Matched L1DoubleMuOpen
 - \succ vertex Prob > 0.05

Run 136100, Event 256858438

• Measured Parameters:

$$M(\mu\mu K) = 5.268 \text{ GeV}/c^{2}$$

$$M(\mu\mu) = 3.135 \text{ GeV}/c^{2}$$

$$p_{T}(B) = 18.6 \text{ GeV}/c$$

$$p_{T}(\mu^{+}) = 10.1 \text{ GeV}/c$$

$$p_{T}(\mu^{-}) = 3.4 \text{ GeV}/c$$

$$p_{T}(K^{-}) = 5.3 \text{ GeV}/c$$

$$Prob(\chi^{2}) = 0.844$$

$$L_{xy} = 1.93 \text{ mm}$$

$$\sigma(L_{xy}) = 0.11 \text{ mm}$$

$$L_{xy}/\sigma(L_{xy}) = 18$$

3-trk vertex that is displaced from the PV by 2mm (18 σ).

Our background is dominated by real J/ ψ

